
Zhou-Guang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. Journal of the American Chemical Society, 2019, 141, 9623-9628.	6.6	276
2	Multistimuliâ€Responsive, Moldable Supramolecular Hydrogels Cross‣inked by Ultrafast Complexation of Metal Ions and Biopolymers. Angewandte Chemie - International Edition, 2015, 54, 7944-7948.	7.2	257
3	Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nature Communications, 2016, 7, 13318.	5.8	226
4	NiO as a Bifunctional Promoter for RuO ₂ toward Superior Overall Water Splitting. Small, 2018, 14, e1704073.	5.2	214
5	Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochimica Acta, 2011, 56, 4985-4991.	2.6	199
6	Facile Synthesis of Vanadium-Doped Ni ₃ S ₂ Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 5959-5967.	4.0	196
7	Synergistic effect of 2D Ti ₂ C and g-C ₃ N ₄ for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 16748-16756.	5.2	192
8	Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy and Environmental Science, 2012, 5, 7898.	15.6	191
9	Ultra-high electrocatalytic activity of VS ₂ nanoflowers for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15080-15086.	5.2	189
10	Synergistic Interlayer and Defect Engineering in VS ₂ Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, 1703098.	5.2	180
11	Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. Journal of Alloys and Compounds, 2009, 476, 715-719.	2.8	174
12	Defect-Assisted Selective Surface Phosphorus Doping to Enhance Rate Capability of Titanium Dioxide for Sodium Ion Batteries. ACS Nano, 2019, 13, 9247-9258.	7.3	173
13	Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ with Enhanced Cyclability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12594-12604.	4.0	173
14	Single-crystal α-MnO2nanorods: synthesis and electrochemical properties. Nanotechnology, 2007, 18, 115616.	1.3	166
15	A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Research, 2010, 3, 895-901.	5.8	165
16	A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chemistry, 2020, 22, 4473-4482.	4.6	158
17	Hydrogenated TiO ₂ Nanotube Arrays as Highâ€Rate Anodes for Lithiumâ€lon Microbatteries. ChemPlusChem, 2012, 77, 991-1000.	1.3	150
18	Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors. Journal of Power Sources, 2015, 294, 120-127.	4.0	142

#	Article	IF	CITATIONS
19	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8007-8011.	7.2	140
20	Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application. Advanced Functional Materials, 2017, 27, 1702437.	7.8	136
21	rGO/SnS ₂ /TiO ₂ heterostructured composite with dual-confinement for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 25056-25063.	5.2	136
22	A Flexible Solidâ€State Aqueous Zinc Hybrid Battery with Flat and Highâ€Voltage Discharge Plateau. Advanced Energy Materials, 2019, 9, 1902473.	10.2	136
23	Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. Journal of Power Sources, 2012, 198, 251-257.	4.0	122
24	SnS ₂ /TiO ₂ nanohybrids chemically bonded on nitrogen-doped graphene for lithium–sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale, 2018, 10, 15505-15512.	2.8	116
25	Preparation and luminescence properties of Eu3+-doped MSnO3 (M = Ca, Sr and Ba) perovskite materials. Journal of Alloys and Compounds, 2005, 387, L1-L4.	2.8	114
26	Structure Engineering of MoS ₂ via Simultaneous Oxygen and Phosphorus Incorporation for Improved Hydrogen Evolution. Small, 2020, 16, e1905738.	5.2	112
27	Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Science China Materials, 2017, 60, 654-663.	3.5	110
28	Edge Defect Engineering of Nitrogen-Doped Carbon for Oxygen Electrocatalysts in Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29448-29456.	4.0	110
29	A high performance O ₂ selective membrane based on CAU-1-NH ₂ @polydopamine and the PMMA polymer for Li–air batteries. Chemical Communications, 2015, 51, 4364-4367.	2.2	107
30	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. Chemical Communications, 2018, 54, 463-466.	2.2	107
31	Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Materials, 2020, 28, 300-306.	9.5	105
32	The electrochemical behavior of Clâ^' assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries. Electrochimica Acta, 2014, 143, 340-346.	2.6	102
33	In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chemical Engineering Journal, 2020, 395, 125180.	6.6	100
34	Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 12116-12123.	7.2	97
35	Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Materials, 2019, 18, 375-381.	9.5	96
36	Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chemical Communications, 2017, 53, 1615-1618.	2.2	91

#	Article	IF	CITATIONS
37	In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. Nanoscale, 2012, 4, 6800.	2.8	90
38	Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Research, 2015, 8, 2744-2754.	5.8	90
39	Aluminothermal synthesis and characterization of Li3V2â^'xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochimica Acta, 2011, 56, 2823-2827.	2.6	89
40	Efficient coupling of a hierarchical V ₂ O ₅ @Ni ₃ S ₂ hybrid nanoarray for pseudocapacitors and hydrogen production. Journal of Materials Chemistry A, 2017, 5, 17954-17962.	5.2	88
41	Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 7249-7256.	4.0	88
42	Flexible Membrane Consisting of MoP Ultrafine Nanoparticles Highly Distributed Inside N and P Codoped Carbon Nanofibers as Highâ€Performance Anode for Potassiumâ€lon Batteries. Small, 2020, 16, e1905301.	5.2	85
43	Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation. Journal of Materials Chemistry A, 2014, 2, 3894.	5.2	84
44	Facile synthesis of spinel CuCo ₂ O ₄ nanocrystals as high-performance cathode catalysts for rechargeable Li–air batteries. Chemical Communications, 2014, 50, 14635-14638.	2.2	84
45	Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. Journal of Alloys and Compounds, 2016, 654, 384-391.	2.8	84
46	CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Solar Energy, 2009, 83, 1534-1539.	2.9	82
47	High-Performance Sodium-Ion Batteries Based on Nitrogen-Doped Mesoporous Carbon Spheres with Ultrathin Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 2970-2977.	4.0	82
48	Pulsed Laser Deposition and Electrochemical Characterization of LiFePO ₄ –Ag Composite Thin Films. Advanced Functional Materials, 2007, 17, 3885-3896.	7.8	81
49	Shape-controlled synthesis and characterization of BaZrO3 microcrystals. Journal of Crystal Growth, 2004, 266, 539-544.	0.7	80
50	Preparation and Luminescence Properties of Eu3+-Doped MSnO3 (M: Ca, Sr and Ba) Perovskite Materials ChemInform, 2005, 36, no.	0.1	80
51	Dextran Sulfate Lithium as Versatile Binder to Stabilize Highâ€Voltage LiCoO ₂ to 4.6 V. Advanced Energy Materials, 2021, 11, 2101864.	10.2	80
52	Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals. Journal of Solid State Chemistry, 2004, 177, 3075-3079.	1.4	79
53	Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Materials, 2017, 7, 229-235.	9.5	78
54	Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping. Electrochimica Acta, 2018, 281, 208-217.	2.6	78

#	Article	IF	CITATIONS
55	Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 5560.	6.7	77
56	Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries. Nanoscale, 2013, 5, 6338.	2.8	77
57	Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. Journal of Power Sources, 2011, 196, 6394-6399.	4.0	75
58	Structural and Electronic Engineering of Ir-Doped Ni-(Oxy)hydroxide Nanosheets for Enhanced Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 5386-5395.	5.5	75
59	Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 15060.	5.2	72
60	Citric Acid- and Ammonium-Mediated Morphological Transformations of Olivine LiFePO ₄ Particles. Chemistry of Materials, 2011, 23, 2848-2859.	3.2	71
61	Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO _x â€Ni ₃ N Heterostructures toward Highâ€Đurability and Kinetically Accelerated Water Splitting. Small, 2022, 18, e2106554.	5.2	71
62	Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage. Chemical Engineering Journal, 2018, 350, 201-208.	6.6	70
63	Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochimica Acta, 2017, 244, 112-118.	2.6	68
64	Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12621-12629.	3.2	68
65	Two-step synthesis and ethanol sensing properties of Zn2SnO4SnO2 nanocomposites. Materials Chemistry and Physics, 2005, 92, 5-9.	2.0	67
66	Pulse Laser Deposition and Electrochemical Characterization of LiFePO ₄ â^'C Composite Thin Films. Journal of Physical Chemistry C, 2008, 112, 7069-7078.	1.5	65
67	Alternating assembly of Ni–Al layered double hydroxide and graphene for high-rate alkaline battery cathode. Chemical Communications, 2015, 51, 9983-9986.	2.2	63
68	Versatile Strategy for Realizing Flexible Room-Temperature All-Solid-State Battery through a Synergistic Combination of Salt Affluent PEO and Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ Nanofibers. ACS Applied Materials & amp; Interfaces, 2020, 12, 7222-7231.	4.0	63
69	One-Pot Synthesis of Co-Doped VSe ₂ Nanosheets for Enhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 644-653.	2.5	59
70	Understanding and suppressing side reactions in Li–air batteries. Materials Chemistry Frontiers, 2017, 1, 2495-2510.	3.2	59
71	Stabilizing intermediates and optimizing reaction processes with N doping in Cu2O for enhanced CO2 electroreduction. Applied Catalysis B: Environmental, 2022, 308, 121191.	10.8	59
72	Revealing Mechanism of Li ₃ PO ₄ Coating Suppressed Surface Oxygen Release for Commercial Ni-Rich Layered Cathodes. ACS Applied Energy Materials, 2020, 3, 7445-7455.	2.5	58

#	Article	IF	CITATIONS
73	Hydrothermal synthesis of CaSnO 3 cubes. Inorganic Chemistry Communication, 2004, 7, 731-733.	1.8	57
74	Facile and Rapid Synthesis of Highly Porous Wirelike TiO ₂ as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 1608-1613.	4.0	57
75	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	1.7	57
76	Facile Synthesis of Nitrogen and Sulfur Codoped Carbon from Ionic Liquid as Metal-Free Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 7214-7221.	4.0	57
77	WS ₂ Nanosheets with Highlyâ€Enhanced Electrochemical Activity by Facile Control of Sulfur Vacancies. ChemCatChem, 2019, 11, 2667-2675.	1.8	57
78	Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 2021, 55, 80-91.	7.1	57
79	Self-Supported Hierarchical IrO ₂ @NiO Nanoflake Arrays as an Efficient and Durable Catalyst for Electrochemical Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 25854-25862.	4.0	56
80	Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4. Electrochimica Acta, 2010, 56, 995-999.	2.6	55
81	General synthesis of LiLn(MO ₄) ₂ :Eu ³⁺ (Ln = La, Eu, Gd, Y; M = W,) Tj ET	⁻ Qq1_1_0.78	343 <u>1</u> 4 rgBT /○
82	High energy batteries based on sulfur cathode. Green Energy and Environment, 2019, 4, 345-359.	4.7	55
83	Core/shell nanostructured Na 3 V 2 (PO 4) 3 /C/TiO 2 composite nanofibers as a stable anode for sodium-ion batteries. Journal of Power Sources, 2017, 362, 147-159.	4.0	54
84	Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi _{0.5} Na _{0.5} TiO ₃ –SrTiO ₃ ceramics. Journal of Materials Chemistry C, 2020, 8, 2411-2418.	2.7	54
85	Hydrothermal synthesis and characterization of ZnGa2O4 phosphors. Materials Chemistry and Physics, 2006, 97, 247-251.	2.0	53
86	Coherent TiO ₂ /BaTiO ₃ heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chemical Communications, 2018, 54, 12250-12253.	2.2	53
87	Preparation and electrochemical properties of Li4Ti5O12 thin film electrodes by pulsed laser deposition. Journal of Power Sources, 2009, 193, 816-821.	4.0	52
88	Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms. Applied Energy, 2018, 225, 513-521.	5.1	52
89	Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 25402.	6.7	51
90	BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al–air batteries. Journal of Power Sources, 2014, 263, 37-45.	4.0	51

#	Article	IF	CITATIONS
91	Fabrication of LiF/Fe/Graphene Nanocomposites As Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 892-897.	4.0	50
92	Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFe _x Co _{1â^'x} PO ₄ . Journal of Materials Chemistry A, 2014, 2, 11948-11957.	5.2	50
93	Self-supported nickel iron oxide nanospindles with high hydrophilicity for efficient oxygen evolution. Chemical Communications, 2019, 55, 10860-10863.	2.2	50
94	Cobalt-copper layered double hydroxide nanosheets as high performance bifunctional catalysts for rechargeable lithium-air batteries. Journal of Alloys and Compounds, 2016, 688, 380-387.	2.8	48
95	Decoupled Redox Catalytic Hydrogen Production with a Robust Electrolyte-Borne Electron and Proton Carrier. Journal of the American Chemical Society, 2021, 143, 223-231.	6.6	48
96	Designing Efficient Dual-Metal Single-Atom Electrocatalyst TMZnN ₆ (TM = Mn, Fe, Co, Ni,) Tj ETQq0	00.rgBT	/Oyerlock 10
97	Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. Journal of Solid State Chemistry, 2012, 190, 104-110.	1.4	46
98	Sol–gel preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors. Optical Materials, 2010, 32, 857-861.	1.7	45
99	Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Metals, 2021, 40, 90-95.	3.6	45
100	Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries. Energy Storage Materials, 2021, 37, 619-627.	9.5	45
101	Lamellarly Stacking Porous N, P Coâ€Doped Mo ₂ C/C Nanosheets as High Performance Anode for Lithiumâ€Ion Batteries. Small, 2019, 15, e1805022.	5.2	43
102	The potential application of 2D Ti2CT2 (T = C, O and S) monolayer MXenes as anodes for Na-ion batteries: A theoretical study. Computational Materials Science, 2019, 163, 267-277.	1.4	43
103	Solid electrolyte interface stabilization <i>via</i> surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3606-3612.	5.2	43
104	Considerable photoluminescence enhancement of LiEu(MoO4)2 red phosphors via Bi and/or Si doping for white LEDs. Journal of Alloys and Compounds, 2015, 625, 355-361.	2.8	42
105	Low-Cost and Novel Si-Based Gel for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 10699-10707.	4.0	42
106	MoC ultrafine nanoparticles confined in porous graphitic carbon as extremely stable anode materials for lithium- and sodium-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 289-295.	3.0	42
107	Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries. Journal of Power Sources, 2020, 462, 228098.	4.0	42
108	Shape-controlled synthesis and characterization of InVO4 particles. Journal of Colloid and Interface Science, 2006, 295, 440-444.	5.0	41

#	Article	IF	CITATIONS
109	Synthesis and gas-sensing properties of CaSnO3 microcubes. Solid State Sciences, 2008, 10, 1042-1048.	1.5	41
110	Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chemical Communications, 2017, 53, 2138-2141.	2.2	41
111	A general aqueous sol–gel route to Ln ₂ Sn ₂ O ₇ nanocrystals. Nanotechnology, 2008, 19, 025706.	1.3	40
112	Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 514-521.	4.0	40
113	Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries. Small Methods, 2021, 5, e2100580.	4.6	40
114	Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density. Materials Today Physics, 2020, 12, 100176.	2.9	39
115	Cobalt-Doped NiS ₂ Micro/Nanostructures with Complete Solid Solubility as High-Performance Cathode Materials for Actual High-Specific-Energy Thermal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 50377-50387.	4.0	39
116	Hierarchical Doping Engineering with Active/Inert Dual Elements Stabilizes LiCoO ₂ to 4.6ÂV. Advanced Energy Materials, 2022, 12, .	10.2	39
117	Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Materials Chemistry and Physics, 2014, 144, 25-30.	2.0	38
118	Conformal Coating of Heterogeneous CoO/Co Nanocomposites on Carbon Nanotubes as Efficient Bifunctional Electrocatalyst for Li-Air Batteries. Electrochimica Acta, 2016, 219, 560-567.	2.6	38
119	Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network. Composites Science and Technology, 2019, 184, 107863.	3.8	38
120	In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Science China Materials, 2020, 63, 728-738.	3.5	38
121	Facile synthesis and electrochemical characterization of hierarchical α-MnO2 spheres. Journal of Alloys and Compounds, 2008, 466, 250-257.	2.8	37
122	Facile synthesis and photocatalytic activity of hierarchical WO3 core–shell microspheres. Applied Surface Science, 2011, 258, 1719-1724.	3.1	36
123	Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chemical Communications, 2020, 56, 1251-1254.	2.2	36
124	Electrospun Nitrogenâ€Doped Carbon Nanofibers Encapsulating Cobalt Nanoparticles as Efficient Oxygen Reduction Reaction Catalysts. ChemElectroChem, 2016, 3, 1437-1445.	1.7	35
125	Oxygen-rich nanoflake-interlaced carbon microspheres for potassium-ion battery anodes. Chemical Communications, 2020, 56, 3433-3436.	2.2	35
126	Single-crystalline Li4Ti5O12 nanorods and their application in high rate capability Li4Ti5O12/LiMn2O4 full cells. Journal of Power Sources, 2013, 242, 222-229.	4.0	34

#	Article	IF	CITATIONS
127	Crystalâ€Face Tailored Graphitic Carbon Nitride Films for Highâ€Performance Photoelectrochemical Cells. ChemSusChem, 2018, 11, 2497-2501.	3.6	34
128	Scalable and controllable synthesis of multi-shell hollow carbon microspheres for high-performance supercapacitors. Carbon, 2019, 154, 330-341.	5.4	34
129	Synergistic Effects of C/α-MoC and Ag for Efficient Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2018, 9, 779-784.	2.1	33
130	A high-rate cathode material hybridized by in-site grown Ni–Fe layered double hydroxides and carbon black nanoparticles. Journal of Materials Chemistry A, 2016, 4, 4877-4881.	5.2	32
131	Single-phase LiY(MoO 4) 2â~'x (WO 4) x :Dy 3+ , Eu 3+ phosphors with white luminescence for white LEDs. Materials Research Bulletin, 2016, 84, 429-436.	2.7	32
132	Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na-ion batteries. Journal of Power Sources, 2018, 396, 574-579.	4.0	32
133	Photoluminescence Enhancement of (La _{0.95} Eu _{0.05}) ₂ Ti ₂ O ₇ Nanophosphors via Li ⁺ Doping. Journal of the American Ceramic Society, 2009, 92, 931-933.	1.9	31
134	Interfacial redox reaction-directed synthesis of silver@cerium oxide core–shell nanocomposites as catalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2015, 286, 136-144.	4.0	31
135	Binder-free hydrogenated NiO–CoO hybrid electrodes for high performance supercapacitors. RSC Advances, 2015, 5, 31725-31731.	1.7	31
136	V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries. Scientific Reports, 2016, 6, 33597.	1.6	31
137	Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 22692.	6.7	30
138	Hydrothermal-assisted ion exchange synthesis and photoluminescence of Li+ and Eu3+ co-doped NaLa(WO4)2 as near-UV type red phosphors. Journal of Luminescence, 2012, 132, 1220-1225.	1.5	30
139	Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2985-2995.	1.2	30
140	Facile synthesis of ultrathin MoS ₂ /C nanosheets for use in sodium-ion batteries. RSC Advances, 2017, 7, 285-289.	1.7	30
141	Constructing stable covalent bonding in black phosphorus/reduced graphene oxide for lithium ion battery anodes. Chemical Communications, 2020, 56, 11613-11616.	2.2	30
142	Reticular chemistry in electrochemical carbon dioxide reduction. Science China Materials, 2020, 63, 1113-1141.	3.5	30
143	Porous graphitic carbon prepared from the catalytic carbonization of Mo-containing resin for supercapacitors. RSC Advances, 2014, 4, 13518.	1.7	29
144	Synergistic effects of Pd–Ag bimetals and g-C3N4 photocatalysts for selective and efficient conversion of gaseous CO2. Journal of Power Sources, 2020, 466, 228306.	4.0	29

#	Article	IF	CITATIONS
145	Trimetallic Zeolitic imidazolite framework-derived Co nanoparticles@CoFe-nitrogen-doped porous carbon as bifunctional electrocatalysts for Zn-air battery. Journal of Colloid and Interface Science, 2021, 586, 621-629.	5.0	29
146	Regulating the radical intermediates by conjugated units in covalent organic frameworks for optimized lithium ion storage. Journal of Energy Chemistry, 2022, 69, 428-433.	7.1	29
147	Graphene oxide/poly(vinyl alcohol) hydrogels with good tensile properties and reusable adsorption properties. Plastics, Rubber and Composites, 2017, 46, 53-59.	0.9	28
148	Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries. Science China Materials, 2019, 62, 474-486.	3.5	28
149	Dilute Aqueousâ€Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Advanced Materials, 2021, 33, e2102390.	11.1	28
150	Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Science China Materials, 2017, 60, 937-946.	3.5	27
151	Stabilizing the oxygen lattice and reversible oxygen redox in Na-deficient cathode oxides. Journal of Power Sources, 2019, 439, 227086.	4.0	27
152	Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Metals, 2022, 41, 2055-2062.	3.6	27
153	In Situ Study of K ⁺ Electrochemical Intercalating into MoS ₂ Flakes. Journal of Physical Chemistry C, 2019, 123, 5067-5072.	1.5	26
154	Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chemical Communications, 2021, 57, 7810-7813.	2.2	26
155	Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy. Journal of Colloid and Interface Science, 2022, 607, 68-75.	5.0	26
156	Synthesis and electrochemical properties of LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials. Journal of Alloys and Compounds, 2012, 517, 186-191.	2.8	25
157	Optical oxygen sensors based on microfibers formed from fluorinated copolymers. Sensors and Actuators B: Chemical, 2019, 282, 885-895.	4.0	25
158	In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Research, 2022, 15, 7759-7768.	5.8	25
159	Electrochemical performance and kinetic behavior of lithium ion in Li 4 Ti 5 O 12 thin film electrodes. Applied Surface Science, 2014, 314, 936-941.	3.1	24
160	Efficient Surface Modulation of Single-Crystalline Na ₂ Ti ₃ O ₇ Nanotube Arrays with Ti ³⁺ Self-Doping toward Superior Sodium Storage. , 2019, 1, 389-398.		24
161	Cobaltâ€Vanadium Hydroxide Nanoneedles with a Freeâ€Standing Structure as Highâ€Performance Oxygen Evolution Reaction Electrocatalysts. ChemElectroChem, 2019, 6, 2050-2055.	1.7	24
162	SnS/SnSb@C Nanofibers with Enhanced Cycling Stability via Vulcanization as an Anode for Sodiumâ€lon Batteries. ChemElectroChem, 2018, 5, 1098-1104.	1.7	23

#	Article	IF	CITATIONS
163	Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 1361-1366.	3.0	23
164	Suppressing Continuous Volume Expansion of Si Nanoparticles by an Artificial Solid Electrolyte Interphase for High-Performance Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 8059-8068.	3.2	23
165	Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction. Composites Communications, 2021, 27, 100866.	3.3	23
166	Preparation of highly graphitized porous carbon from resins treated with Cr6+-containing wastewater for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 6558.	5.2	22
167	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie, 2018, 130, 8139-8143.	1.6	22
168	Facile synthesis and characterization of sheet-like Y2O3:Eu3+ microcrystals. Journal of Crystal Growth, 2005, 276, 513-518.	0.7	21
169	Exploring synergetic effects of vinylene carbonate and 1,3-propane sultone on LiNi0.6Mn0.2Co0.2O2/graphite cells with excellent high-temperature performance. Journal of Power Sources, 2019, 437, 226929.	4.0	21
170	Electrochemical characterization of diamond like carbon thin films. Diamond and Related Materials, 2008, 17, 1871-1876.	1.8	20
171	Synthesis and photocatalytic activity of CuYyFe2â^'yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation. Renewable Energy, 2009, 34, 2399-2403.	4.3	20
172	Facile synthesis of porous Li-rich layered Li[Li _{0.2} Mn _{0.534} Ni _{0.133} Co _{0.133}]O ₂ as high-performance cathode materials for Li-ion batteries. RSC Advances, 2015, 5, 30507-30513.	1.7	20
173	Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials. Rare Metals, 2017, 36, 442-448.	3.6	20
174	FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage. Nano Research, 2022, 15, 217-224.	5.8	20
175	Inâ€5itu Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€5olidâ€5tate Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 12223-12230.	1.6	20
176	Sol-gel synthesis and photoluminescence characterization of La2Ti2O7:Eu3+ nanocrystals. Rare Metals, 2011, 30, 602-606.	3.6	19
177	Vanadium self-intercalated C/V1.11S2 nanosheets with abundant active sites for enhanced electro-catalytic hydrogen evolution. Electrochimica Acta, 2019, 300, 208-216.	2.6	19
178	Synergistic electronic and morphological modulation on ternary Co1â^'xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Science China Materials, 2021, 64, 880-891.	3.5	19
179	Microporous Fe–N4 cataysts derived from biomass aerogel for a high-performance Zn–air battery. Materials Today Energy, 2021, 21, 100826.	2.5	19
180	3D oxidized polyacrylonitrile/Ag framework guided bottom-up lithium deposition for dendrite-free lithium metal batteries. Chemical Engineering Journal, 2021, 426, 130780.	6.6	19

#	Article	IF	CITATIONS
181	Li1.2Ni0.25Mn0.55O2: A high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure. Journal of Alloys and Compounds, 2020, 827, 154202.	2.8	19
182	An all-in-one supercapacitor working at sub-zero temperatures. Science China Materials, 2020, 63, 660-666.	3.5	18
183	Ternary Transition Metal Sulfide as High Real Energy Cathode for Lithium–Sulfur Pouch Cell Under Lean Electrolyte Conditions. Small Methods, 2022, 6, e2101402.	4.6	18
184	Facile synthesis and electrochemical characterization of Sn4Ni3/C nanocomposites as anode materials for lithium ion batteries. Journal of Solid State Chemistry, 2012, 196, 536-542.	1.4	17
185	Layered Li2MnO3·3LiNi0.5â^'xMn0.5â^'xCo2xO2 microspheres with Mn-rich cores as high performance cathode materials for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 16579.	1.3	17
186	Simple template fabrication of porous MnCo ₂ O ₄ hollow nanocages as high-performance cathode catalysts for rechargeable Li-O ₂ batteries. Nanotechnology, 2016, 27, 135703.	1.3	17
187	Anti-thermal quenching of Eu3+ luminescence in negative thermal expansion Zr(WO4)2. Ceramics International, 2021, 47, 34820-34827.	2.3	17
188	Facile synthesis and electrochemical properties of hierarchical MnO2 submicrospheres and LiMn2O4 microspheres. Journal of Physics and Chemistry of Solids, 2007, 68, 1422-1427.	1.9	16
189	Large-scale fabrication of hierarchical α-Fe2O3 assemblies as high performance anode materials for lithium-ion batteries. CrystEngComm, 2012, 14, 7882.	1.3	16
190	Electromagnetic and Chemical Enhancements of Surfaceâ€Enhanced Raman Scattering Spectra from Cu ₂ O Hexagonal Nanoplates. Advanced Materials Interfaces, 2019, 6, 1900534.	1.9	16
191	Improved mechanical and dielectric performances of epoxy nanocomposites filled with aminated polyethylene glycol grafted graphene. Materials Letters, 2019, 246, 149-152.	1.3	16
192	Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Science China Materials, 2021, 64, 2987-2996.	3.5	16
193	Hierarchical Ultrafine Ni ₃ V ₂ O ₈ Nanoparticles Anchored on rGO as Highâ€Performance Anode Materials for Lithiumâ€ion Batteries. Energy Technology, 2019, 7, 1800784.	1.8	15
194	Hierarchical mesoporous heteroatom-doped carbon accelerating the adsorption and conversion of polysulfide for high performance Lithium–Sulfur batteries. Composites Communications, 2022, 30, 101079.	3.3	15
195	In situ, facile synthesis of La0.8Sr0.2MnO3/nitrogen-doped graphene: a high-performance catalyst for rechargeable Li-O2 batteries. Ionics, 2017, 23, 2241-2250.	1.2	14
196	Insights into the chemical and structural evolution of Li-rich layered oxide cathode materials. Inorganic Chemistry Frontiers, 2021, 8, 127-140.	3.0	14
197	Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. Nano Research, 2022, 15, 2994-3000.	5.8	13
198	Fast synthesis of monodisperse TiO2 submicrospheres via a modified sol-gel approach. Rare Metals, 2008, 27, 1-4.	3.6	12

#	Article	IF	CITATIONS
199	Triethylene Glycol Assisted Synthesis of Pure Tavorite LiFeSO ₄ F Cathode Material for Li-Ion Battery. Journal of the Electrochemical Society, 2013, 160, A3072-A3076.	1.3	12
200	Electrodeposition of (111)-oriented and nanotwin-doped nanocrystalline Cu with ultrahigh strength for 3D IC application. Nanotechnology, 2021, 32, 225702.	1.3	12
201	Facile synthesis of La2Mo2O9 nanoparticles via an EDTA complexing approach. Rare Metals, 2008, 27, 340-344.	3.6	11
202	Exploring an effective oxygen reduction reaction catalyst via 4eâ^' process based on waved-graphene. Science China Materials, 2017, 60, 739-746.	3.5	11
203	Ultrathin BiOX (X = Cl, Br, I) Nanosheets as Al-air Battery Catalysts. Electrochimica Acta, 2017, 249, 413-420.	2.6	11
204	Oxygen Reduction Reaction Mechanism of Nitrogen-Doped Graphene Derived from Ionic Liquid. Energy Procedia, 2017, 142, 1319-1326.	1.8	11
205	The nanoscale effects on the morphology, microstructure and electrochemical performances of the cathodic deposited α-Ni(OH)2. Electrochimica Acta, 2018, 261, 58-65.	2.6	11
206	Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries. Nano Research, 2018, 11, 2424-2435.	5.8	11
207	The Decay Mechanism Related to Structural and Morphological Evolution in Lithiumâ€Rich Cathode Materials for Lithiumâ€lon Batteries. ChemSusChem, 2020, 13, 3237-3242.	3.6	11
208	Bimetallic Ag–Cu nanosheets assembled flower-like structure for oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 856, 157379.	2.8	11
209	Adhesion-Shielding based synthesis of interfacially active magnetic Janus nanoparticles. Journal of Colloid and Interface Science, 2022, 607, 1741-1753.	5.0	11
210	Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 110758-110764.	1.7	10
211	Ultrafine NaTi2(PO4)3 Nanoparticles Encapsulated in N-CNFs as Ultra-Stable Electrode for Sodium Storage. Frontiers in Chemistry, 2018, 6, 270.	1.8	10
212	Selective preparation of graphene- and rope-like NanoCarbons from camellia wastes as high performance electrode materials for energy storage. Journal of Alloys and Compounds, 2019, 811, 151616.	2.8	10
213	A novel Mn/Co dual nanoparticle decorated hierarchical carbon structure derived from a biopolymer hydrogel as a highly efficient electro-catalyst for the oxygen reduction reaction. Chemical Communications, 2019, 55, 13900-13903.	2.2	10
214	Effective degradation of refractory nitrobenzene in water by the natural 4-hydroxycoumarin under solar illumination. Chemosphere, 2019, 215, 199-205.	4.2	10
215	Processing Agricultural Cornstalks toward Highâ€Efficient Stable Bifunctional ORR/OER Electrocatalysts. Advanced Sustainable Systems, 2022, 6, .	2.7	10
216	Electrochemical fabrication and optical properties of porous tin oxide films with structural colors. Journal of Applied Physics, 2014, 116, .	1.1	9

#	Article	IF	CITATIONS
217	Graphitized porous carbon prepared from pyrolysis of Sterculia scaphigera and its application in lithium ion batteries. RSC Advances, 2015, 5, 46558-46563.	1.7	9
218	Si Wire Supported MnO2/Al/Fluorocarbon 3D Core/Shell Nanoenergetic Arrays with Long-Term Storage Stability. Scientific Reports, 2017, 7, 6678.	1.6	9
219	Oxidation State as a Descriptor in Oxygen Reduction Electrocatalysis. CCS Chemistry, 2022, 4, 3587-3598.	4.6	9
220	Kinetics of Li ⁺ transport and capacity retention capability of HT- LiCoO ₂ films. Physica Scripta, 2007, T129, 38-42.	1.2	8
221	Grain refining effect of magnetic field on Mg2Ni0.8Mn0.2 hydrogen storage alloys during rapid quenching. Electrochimica Acta, 2013, 112, 535-540.	2.6	8
222	Facile synthesis of anhydrous Li 2 B 12 H 12 with high purity by solvent-free method. Inorganica Chimica Acta, 2017, 464, 147-151.	1.2	8
223	Coupling a Three-Dimensional Nanopillar and Robust Film to Guide Li-Ion Flux for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 45416-45425.	4.0	8
224	Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. Frontiers in Chemistry, 2021, 9, 744417.	1.8	8
225	Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. Nano Research, 2016, 9, 353-362.	5.8	7
226	Single copper sites dispersed on defective TiO2â^'x as a synergistic oxygen reduction reaction catalyst. Journal of Chemical Physics, 2021, 154, 034705.	1.2	7
227	Revealing the catalytic pathway of a quinone-mediated oxygen reduction reaction in aprotic Li–O ₂ batteries. Chemical Communications, 2022, 58, 1025-1028.	2.2	7
228	LiNi0.7Co0.15Mn0.15O2 microspheres as high-performance cathode materials for lithium-ion batteries. Rare Metals, 2014, 33, 608-614.	3.6	6
229	Facile one-pot fabrication of α-Fe2O3 nano-coffee beans by etching along [001] direction for high lithium storage. Science China Materials, 2017, 60, 1187-1195.	3.5	6
230	Synthesis and Photoluminescence Characterization of Ellipsoidal Lanthanide Orthophosphate Nanoparticles. Journal of the American Ceramic Society, 2011, 94, 556-560.	1.9	5
231	Ultrafast construction of partially hydrogen-bonded metal-hyaluronan networks with multiple biotissue-related features. Carbohydrate Polymers, 2022, 295, 119852.	5.1	5
232	Evaluation of Pulsed Laser Deposited Li ₄ Ti ₅ O _{12 } Thin Film Anodes by CV and EIS. Materials Science Forum, 0, 743-744, 13-19.	0.3	4
233	A novel tunable white light emitting multiphase phosphor obtained from Ba2TiP2O9 by introducing Eu3+. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	4
234	A facile solvent-free method for NaBH 4 and Na 2 B 12 H 12 synthesis. Inorganica Chimica Acta, 2018, 474, 16-21.	1.2	4

#	Article	IF	CITATIONS
235	A pseudo-metal-free strategy for constructing high performance photoelectrodes. Journal of Materials Chemistry A, 2020, 8, 12767-12773.	5.2	4
236	Ionic Liquid Mediated Synthesis of Lath Shaped <scp>CuO</scp> Microâ€Assembles as Extremely Stable Anode Material for Lithiumâ€Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1299-1304.	2.6	3
237	High-performance 2.5 V aqueous asymmetric supercapacitor based on MnO ₂ nanowire/hierarchical porous carbon composite. Materials Technology, 2022, 37, 780-788.	1.5	3
238	Improving the stability of P2-type NaMn2/3Ni1/3O2 via phasic intergrowth induced by Li-ion substitution. Materials Today Energy, 2022, , 101041.	2.5	2
239	Precipitation processes and luminescence properties of ZnO: La3+, Li+ nanoparticles. Journal of Central South University, 2013, 20, 332-336.	1.2	1
240	Additions and corrections for Journal of Materials Chemistry published in 2013. Journal of Materials Chemistry A, 2013, 1, 15559.	5.2	1
241	Quantum Dots: Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
242	Preface to the special issue on energy storage and conversion. Journal of Central South University, 2019, 26, 1385-1386.	1.2	1
243	Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage. Molecules, 2019, 24, 552.	1.7	1
244	Preparation of Ni current collector and MoS <inf>2</inf> cathode in three-dimensional Li ion microbattery based on silicon MCP. , 2010, , .		0
245	Preparation of solid electrolyte PVDF on MOS <inf>2</inf> in Silicon MCP for three-dimensional Li ion microbatteries. , 2010, , .		0
246	Mn3O4/CNT Nanocomposites Derived from Waste Manganese Resources As High Performance Anode Materials for Lithium Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
247	Oxygen Selective Membrane for Lithium Air Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
248	C and N Co-Doped CuO Hollow Microspheres Derived from Cu/Cu2O Assembles As High Performance Anode Materials for Lithium Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
249	Facile Synthesis of Cobalt-Copper Layered Double Hydroxide Nanosheets As Cathode Catalysts for Rechargeable Lithium-Air Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
250	Ultrafine N-Doped Carbon Nanoparticles with Controllable Size As High Performance Electrocatalysts for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2016, , .	0.0	0
251	A Novel Solid Electrolyte Material (Li17Ge2P3S20) with High Ionic Conductivity. ECS Meeting Abstracts, 2016, , .	0.0	0
252	Na10TiP2Se12 As Novel Electrolyte for All-Solid-State Na-Battery. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
253	Anodized Porous Oxide Thin Films for Energy Application. ECS Meeting Abstracts, 2016, , .	0.0	0
254	Hydrothermal Synthesis of Co-N-C Nanocomposites As High Performance Electrocatalysts for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2016, , .	0.0	0