
MarÃ-a A. Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985836/publications.pdf

Version: 2024-02-01

Μλάδα Δ Fedded

#	Article	IF	CITATIONS
1	Salicylic-Acid-Regulated Antioxidant Capacity Contributes to Growth Improvement of Okra (Abelmoschus esculentus cv. Red Balady). Agronomy, 2022, 12, 168.	1.3	5
2	Differential Response of Phenol Metabolism Associated with Antioxidative Network in Elicited Grapevine Suspension Cultured Cells under Saline Conditions. Antioxidants, 2022, 11, 388.	2.2	4
3	Gibberellin reverses the negative effect of paclobutrazol but not of chlorocholine chloride on the expression of SGs/GAs biosynthesis-related genes and increases the levels of relevant metabolites in Stevia rebaudiana. Plant Cell, Tissue and Organ Culture, 2021, 146, 171-184.	1.2	6
4	Genotoxicity and Cytotoxicity Induced in Zygophyllum fabago by Low Pb Doses Depends on the Population's Redox Plasticity. Horticulturae, 2021, 7, 455.	1.2	3
5	OPDA and ABA accumulation in Pb-stressed Zygophyllum fabago can be primed by salicylic acid and coincides with organ-specific differences in accumulation of phenolics. Plant Physiology and Biochemistry, 2020, 154, 612-621.	2.8	9
6	Salt Stress-Induced Changes in In Vitro Cultured Stevia rebaudiana Bertoni: Effect on Metabolite Contents, Antioxidant Capacity and Expression of Steviol Glycosides-Related Biosynthetic Genes. Journal of Plant Growth Regulation, 2019, 38, 1341-1353.	2.8	21
7	Plant Growth Regulators as Potential Elicitors to Increase the Contents of Phenolic Compounds and Antioxidant Capacity in Stevia Plants. Sugar Tech, 2019, 21, 696-702.	0.9	12
8	Differential Pb tolerance in metallicolous and non-metallicolous Zygophyllum fabago populations involves the strengthening of the antioxidative pathways. Environmental and Experimental Botany, 2018, 150, 141-151.	2.0	31
9	Elicitor-Induced Transcriptional Changes of Genes of the Steviol Glycoside Biosynthesis Pathway in Stevia rebaudiana Bertoni. Journal of Plant Growth Regulation, 2018, 37, 971-985.	2.8	27
10	Coordinated role of soluble and cell wall bound phenols is a key feature of the metabolic adjustment in a mining woody fleabane (Dittrichia viscosa L.) population under semi-arid conditions. Science of the Total Environment, 2018, 618, 1139-1151.	3.9	14
11	Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environmental Science and Pollution Research, 2018, 25, 1319-1330.	2.7	37
12	Seasonal ionomic and metabolic changes in Aleppo pines growing on mine tailings under Mediterranean semi-arid climate. Science of the Total Environment, 2018, 637-638, 625-635.	3.9	10
13	Subtle changes in light intensity affect in vitro responses but not ex vitro performance of Limonium sinuatum. 3 Biotech, 2018, 8, 335.	1.1	2
14	Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. Science of the Total Environment, 2017, 575, 437-447.	3.9	24
15	Methanol elicits the accumulation of bioactive steviol glycosides and phenolics in Stevia rebaudiana shoot cultures. Industrial Crops and Products, 2016, 87, 273-279.	2.5	27
16	Evaluation of the environmental plasticity in the xerohalophyte Zygophyllum fabago L. for the phytomanagement of mine tailings in semiarid areas. Chemosphere, 2016, 161, 259-265.	4.2	13
17	Response of biogeochemical processes of the water-soil-plant system to experimental flooding-drying conditions in a eutrophic wetland: the role of Phragmites australis. Plant and Soil, 2015, 396, 109-125.	1.8	15
18	Long-term exposure treatments revert the initial SA-induced alterations of phenolic metabolism in grapevine cell cultures. Plant Cell, Tissue and Organ Culture, 2015, 122, 665-673.	1.2	5

MarÃa A. Ferrer

#	Article	IF	CITATIONS
19	Accumulation and tolerance of cadmium in a non-metallicolous ecotype of Silene vulgaris Garcke (Moench). Anales De BiologÃa, 2014, , .	0.2	2
20	Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiology and Biochemistry, 2014, 84, 57-66.	2.8	30
21	Changes in phenolic metabolism in salicylic acid-treated shoots of Cistus heterophyllus. Plant Cell, Tissue and Organ Culture, 2013, 113, 417-427.	1.2	32
22	Antioxidant Capacity as a Marker for Assessing theIn VitroPerformance of the EndangeredCistus heterophyllus. Scientific World Journal, The, 2013, 2013, 1-10.	0.8	15
23	Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. Journal of Plant Physiology, 2012, 169, 1050-1058.	1.6	37
24	Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chemistry, 2012, 130, 362-369.	4.2	71
25	Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. Journal of Plant Physiology, 2010, 167, 1273-1281.	1.6	57
26	Structural changes, chemical composition and antioxidant activity of cherry tomato fruits (cv.) Tj ETQq0 0 0 rgBT Agriculture, 2009, 89, 1543-1551.	/Overlock 1.7	10 Tf 50 46 60
27	The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees - Structure and Function, 2006, 20, 145-156.	0.9	54
28	Heavy metal stress reduces the deposition of calcium oxalate crystals in leaves of Phaseolus vulgaris. Journal of Plant Physiology, 2005, 162, 1183-1187.	1.6	37
29	Changes in peroxidase activity and isoperoxidase pattern during strawberry (Fragaria × ananassa) callus development. Journal of Plant Physiology, 2002, 159, 429-435.	1.6	8
30	In situ characterization of a NO-sensitive peroxidase in the lignifying xylem of Zinnia elegans. Physiologia Plantarum, 2002, 114, 33-40.	2.6	35
31	Purification and stability of a basic peroxidase from strawberry callus culture. Plant Physiology and Biochemistry, 2001, 39, 479-486.	2.8	13
32	Changes in phenol content during strawberry (Fragaria ×ananassa, cv. Chandler) callus culture. Physiologia Plantarum, 2001, 113, 315-322.	2.6	99
33	Antioxidant Systems and O2 Â.â^'/H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins. Plant Physiology, 2001, 127, 817-831.	2.3	624
34	Differential effects of nitric oxide on peroxidase and H2O2production by the xylem of Zinnia elegans. Plant, Cell and Environment, 1999, 22, 891-897.	2.8	89
35	Does diphenylene iodonium chloride have any effect on the O2 â^ -generating step of plant peroxidases?. FEBS Letters, 1999, 462, 254-256.	1.3	13
36	Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. FEBS Journal, 1998, 253, 20-26.	0.2	43

MarÃa A. Ferrer

#	Article	IF	CITATIONS
37	Ca2+ and Mg2+ ions counteract the reduction by fosetyl-Al (aluminum tris[ethyl phosphonate]) of peroxidase activity from suspension-cultured grapevine cells. Plant Cell, Tissue and Organ Culture, 1997, 47, 207-212.	1.2	4
38	Inactivation of the peroxidase isoenzyme groups, APrx and Lpl BPrx, markers of the in vitro culture of grapevine, by fosetyl-Al (aluminum tris[ethyl phosphonate]). Journal of Plant Physiology, 1996, 149, 149-152.	1.6	1
39	Effects of ethrel on peroxidase of iceberg lettuce leaf tissue. Postharvest Biology and Technology, 1996, 7, 301-307.	2.9	1
40	Oxidation of Capsaicin and Capsaicin Phenolic Precursors by the Basic Peroxidase Isoenzyme B6 from Hot Pepper. Journal of Agricultural and Food Chemistry, 1995, 43, 352-355.	2.4	35
41	Demonstrating the localization of an enzyme in specific plant tissues. Journal of Biological Education, 1994, 28, 239-241.	0.8	0
42	Purification of a basic peroxidase isoenzyme fromCapsicum fruits and the immunoinhibition of its capsaicin oxidation capacity by antibodies raised against horseradish peroxidase. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 240-242.	0.7	13
43	Inactivation of cell wall acidic peroxidase isoenzymes during the oxidation of coniferyl alcohol in Lupinus. Phytochemistry, 1994, 36, 1161-1163.	1.4	13
44	Genistein as an endogenous natural substrate of acidic peroxidases in lupin hypocotyls. Annals of Applied Biology, 1994, 125, 173-178.	1.3	3
45	Aluminum-mediated fosetyl-Al effects on peroxidase secreted from grapevine cells. Environmental and Experimental Botany, 1994, 34, 329-336.	2.0	5
46	Control of the Lignification in Lupinus by Genistein Acting as Superoxide Scavenger and Inhibitor of the Peroxidase-catalyzed Oxidation of Coniferyl Alcohol. Journal of Plant Physiology, 1994, 144, 64-67.	1.6	13
47	Subcellular Localization of a Basic Peroxidase Isoenzyme in Crisphead Lettuce. Journal of the American Society for Horticultural Science, 1994, 119, 1276-1278.	0.5	7
48	The Cell Wall Localization of two Strongly Basic Isoperoxidases in Etiolated Lupinus albus Hypocotyls and its Significance in Coniferyl Alcohol Oxidation and Indole-3-Acetic Acid Catabolism. Journal of Plant Physiology, 1992, 139, 611-616.	1.6	33
49	Constitutive isoflavones as modulators of indole-3-acetic acid oxidase activity of acidic cell wall isoperoxidases from lupin hypocotyls. Phytochemistry, 1992, 31, 3681-3684.	1.4	16
50	The Tonoplast Localization of Two Basic Isoperoxidases of High pl in <i>Lupinus</i> . Botanica Acta, 1991, 104, 272-278.	1.6	31
51	A Biochemical and Cytochemical Study of the Cuticle-associated Peroxidases in Lupinus. Annals of Botany, 1991, 67, 561-568.	1.4	10
52	Soluble peroxidase gradients in lupin hypocotyls and the control of the level of polarly transported indole-3yl-acetic acid. Journal of Plant Growth Regulation, 1991, 10, 139-146.	2.8	15
53	4â€Methoxyâ€Î±â€naphthol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochemical Analysis, 1990, 1, 63-69.	1.2	99
54	Indole-3-methanol is the main product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases from Lupinus. Planta, 1990, 181, 448-450.	1.6	29

#	Article	IF	CITATIONS
55	Oxidation of coniferyl alcohol by cell wall peroxidases at the expense of indole-3-acetic acid and O2. FEBS Letters, 1990, 276, 127-130.	1.3	41