
Hendrik Huwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow. Boundary-Layer Meteorology, 2022, 182, 119-146.	2.3	12
2	Future water temperature of rivers in Switzerland under climate change investigated with physics-based models. Hydrology and Earth System Sciences, 2022, 26, 1063-1087.	4.9	16
3	Climate change scenarios at hourly timeâ€step over Switzerland from an enhanced temporal downscaling approach. International Journal of Climatology, 2021, 41, 3503-3522.	3.5	15
4	Stream temperature and discharge evolution in Switzerland over the last 50Âyears: annual and seasonal behaviour. Hydrology and Earth System Sciences, 2020, 24, 115-142.	4.9	55
5	Radar measurements of blowing snow off a mountain ridge. Cryosphere, 2020, 14, 1779-1794.	3.9	10
6	The European mountain cryosphere: aÂreview of its current state, trends, and future challenges. Cryosphere, 2018, 12, 759-794.	3.9	382
7	How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?. Boundary-Layer Meteorology, 2017, 165, 161-180.	2.3	27
8	Influence of Slopeâ€Scale Snowmelt on Catchment Response Simulated With the <i>Alpine3D</i> Model. Water Resources Research, 2017, 53, 10723-10739.	4.2	36
9	Attenuation of wind-induced pressure perturbations in alpine snow. Journal of Glaciology, 2016, 62, 674-683.	2.2	3
10	StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction. Geoscientific Model Development, 2016, 9, 4491-4519.	3.6	29
11	Adapting Tilt Corrections and the Governing Flow Equations for Steep, Fully Three-Dimensional, Mountainous Terrain. Boundary-Layer Meteorology, 2016, 159, 539-565.	2.3	35
12	Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model. Hydrology and Earth System Sciences, 2015, 19, 3727-3753.	4.9	37
13	Comparison of different numerical approaches to the 1D sea-ice thermodynamics problem. Ocean Modelling, 2015, 87, 20-29.	2.4	9
14	Flow during the evening transition over steep Alpine slopes. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 607-624.	2.7	66
15	Thermal diffusivity of seasonal snow determined from temperature profiles. Advances in Water Resources, 2013, 55, 121-130.	3.8	30
16	Measuring sensible heat flux with high spatial density. , 2012, , .		1
17	Carbon monoxide as a tracer of gas transport in snow and other natural porous media. Geophysical Research Letters, 2012, 39, .	4.0	13
18	Evolution of superficial lake water temperature profile under diurnal radiative forcing. Water Resources Research, 2011, 47, .	4.2	44

HENDRIK HUWALD

#	Article	IF	CITATIONS
19	Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height. Atmospheric Measurement Techniques, 2011, 4, 143-149.	3.1	50
20	Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. Journal of Fluid Mechanics, 2010, 665, 480-515.	3.4	58
21	Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model. Environmental Science & Technology, 2010, 44, 2072-2078.	10.0	65
22	Estimation of wet surface evaporation from sensible heat flux measurements. Water Resources Research, 2009, 45, .	4.2	29
23	Albedo effect on radiative errors in air temperature measurements. Water Resources Research, 2009, 45, .	4.2	82
24	Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake. Boundary-Layer Meteorology, 2008, 128, 205-228.	2.3	40
25	Spatial pattern and stability of the cold surface layer of Storglaciäen, Sweden. Journal of Glaciology, 2007, 53, 99-109.	2.2	42
26	Distributed fiber-optic temperature sensing for hydrologic systems. Water Resources Research, 2006, 42, .	4.2	472
27	Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes. Journal of Geophysical Research, 2005, 110, .	3.3	33
28	A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data. Journal of Geophysical Research, 2005, 110, .	3.3	30