
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the sorbate type on the XRD peak intensities of loaded MCM-41. Microporous Materials, 1996, 6, 375-383.	1.6	344
2	The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 1992, 12, 42-49.	0.5	285
3	Multifunctional, Defectâ€Engineered Metal–Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie - International Edition, 2014, 53, 7058-7062.	13.8	237
4	PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 1996, 6, 259-271.	1.6	225
5	Synthesis and Crystal Structure of Zeolite RUB-41 Obtained as Calcination Product of a Layered Precursor:Â a Systematic Approach to a New Synthesis Route. Chemistry of Materials, 2005, 17, 43-49.	6.7	158
6	Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (Fe _{<i>x</i>} Ni _{1–<i>x</i>}) ₉ S ₈ Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 987-996.	11.2	134
7	Crystal structure of silica-ZSM-12 by the combined use of hgh-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction. The Journal of Physical Chemistry, 1990, 94, 3718-3721.	2.9	128
8	Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: a review. European Journal of Mineralogy, 2012, 24, 405-428.	1.3	128
9	The structure of the new pure silica zeolite RUB-24, Si32O64, obtained by topotactic condensation of the intercalated layer silicate RUB-18. Microporous and Mesoporous Materials, 2005, 83, 201-211.	4.4	119
10	POLYHEDRON DISTORTIONS IN TOURMALINE. Canadian Mineralogist, 2002, 40, 153-162.	1.0	104
11	Local Surface Structure and Composition Control the Hydrogen Evolution Reaction on Iron Nickel Sulfides. Angewandte Chemie - International Edition, 2018, 57, 4093-4097.	13.8	104
12	A Layer Silicate: Synthesis and Structure of the Zeolite Precursor RUB-15—[N(CH3)4]8[Si24O52(OH)4]·20 H2O. Angewandte Chemie International Edition in English, 1996, 35, 2869-2872.	4.4	91
13	Silica-ZSM-22: synthesis and single crystal structure refinement. Zeolites, 1987, 7, 393-397.	0.5	88
14	Classification of tectosilicates and systematic nomenclature of clathrate type tectosilicates: a proposal. Zeolites, 1986, 6, 373-377.	0.5	87
15	The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 2006, 90, 87-101.	4.4	87
16	Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 1995, 4, 111-121.	1.6	74
17	Synthesis, Structure Analysis, and Characterization of a New Thiostannate, (C12H25NH3)4[Sn2S6]Á·2H2O. Inorganic Chemistry, 1997, 36, 4697-4701.	4.0	73
18	Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 2017, 5, 9076-9080.	10.3	71

#	Article	IF	CITATIONS
19	A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society Chemical Communications, 1995, , 2187.	2.0	62
20	Structure solution from powder data of the hydrous layer silicate kanemite, a precursor of the industrial ion exchanger SKS-6. European Journal of Mineralogy, 1999, 11, 125-134.	1.3	59
21	Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: I. Synthesis conditions, chemical and spectroscopic evidence. European Journal of Mineralogy, 2000, 12, 529-541.	1.3	53
22	Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite. Journal of Materials Chemistry A, 2019, 7, 4420-4425.	10.3	52
23	On the Relationship between Refractive Index and Density for SiO2-polymorphs. Physics and Chemistry of Minerals, 1988, 16, 286.	0.8	49
24	CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 5658-5666.	3.1	48
25	New structures—new insights: Progress in structure analysis of nanoporous materials. Microporous and Mesoporous Materials, 1998, 21, 183-197.	4.4	47
26	Studies on clathrasils VIII. Nonasils-[4158], 88SiO2 � 8M8 � 8M9 � 4M20: Synthesis, thermal properties, a crystal structure. Journal of Inclusion Phenomena, 1986, 4, 339-349.	and 0.6	46
27	Water and Cation Distribution in Fully and Partially Hydrated Li-LSX Zeolite. Chemistry of Materials, 2008, 20, 5968-5976.	6.7	44
28	Synthesis and characterisation of the novel GIS-type AlPO4: [NH2Me2][Al2P2O8F]. Chemical Communications, 1996, , 1293.	4.1	43
29	Transmission electron microscopic and small angle X-ray diffraction investigations of Au55(PPh3)12Cl6 microcrystalsâ€. Chemical Communications, 1999, , 1303-1304.	4.1	42
30	High-Pressure Water Intrusion Investigation of Pure Silica RUB-41 and S-SOD Zeolite Materials. Journal of Physical Chemistry C, 2011, 115, 425-430.	3.1	42
31	A New Layered Silicate with Structural Motives of Silicate Zeolites: Synthesis, Crystals Structure, and Properties. Chemistry of Materials, 2008, 20, 1896-1901.	6.7	40
32	Rietveld refinement of the crystal structure of the synthetic porous zincosilicate VPI-7. Zeolites, 1994, 14, 498-503.	0.5	39
33	The diaza-polyoxa-macrocycle `Kryptofix222' as a new template for the synthesis of LTA-type AlPO4. Microporous and Mesoporous Materials, 1998, 22, 87-106.	4.4	39
34	Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Transactions, 2014, 43, 10396-10416.	3.3	39
35	Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, K[AlSi 3 O 8]·H 2 O. Physics and Chemistry of Minerals, 1997, 24, 455-462.	0.8	36
36	Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines. Reaction Chemistry and Engineering, 2019, 4, 975-985.	3.7	35

#	Article	IF	CITATIONS
37	Synthesis and properties of boron containing MCM-41. Journal of Non-Crystalline Solids, 1996, 197, 145-153.	3.1	34
38	Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: II. Structure analysis. European Journal of Mineralogy, 2002, 14, 763-771.	1.3	33
39	The structure of zeolite ZSM-23 (MTT) refined from synchrotron X-ray powder data. Journal of Applied Crystallography, 1993, 26, 636-644.	4.5	32
40	Decasils, a new order-disorder family of microporous silicas. Zeolites, 1995, 15, 388-399.	0.5	32
41	Synthesis and characterization of a new gallophosphate (Mu-1) containing cobalticinium cations. Microporous Materials, 1996, 7, 89-95.	1.6	32
42	High-Pressure Water Intrusion Investigation of Pure Silica ITQ-7 Zeolite. Journal of Physical Chemistry C, 2013, 117, 4098-4103.	3.1	30
43	Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template. Journal of the American Chemical Society, 2019, 141, 18318-18324.	13.7	30
44	The combination of synchrotron powder diffraction and high-resolution solid-state NMR experiments. Journal of Physics and Chemistry of Solids, 1991, 52, 1235-1241.	4.0	29
45	Structure and properties of the composite zeolite silica-ZSM-12/para-nitroaniline. Microporous and Mesoporous Materials, 2002, 56, 11-25.	4.4	29
46	Crystal structure of a novel porous MeAPO phase: ZAPO-M1, {N(CH3)4}8[Zn8Al24P32O128]. Microporous Materials, 1995, 5, 151-159.	1.6	27
47	Synthesis and characterization of the new microporous fluorogallophosphate Mu-2 with a novel framework topology. Chemical Communications, 1998, , 1769-1770.	4.1	27
48	Quinuclidine derivatives as structure directing agents for the synthesis of boron containing zeolites. Journal of Materials Chemistry, 1999, 9, 2529-2536.	6.7	27
49	Nuclear magnetic resonance and infrared spectroscopic study of excess-boron olenite from Koralpe, Styria, Austria. American Mineralogist, 2002, 87, 364-367.	1.9	27
50	Long-chain polyamines and amine—boric acid pairs as templates for the synthesis of porous tectosilicates. Zeolites, 1988, 8, 127-131.	0.5	26
51	Synthesis and structure of the new gallophosphate Mu-6 containing a gallium organic complex as part of the framework. European Journal of Solid State and Inorganic Chemistry, 1998, 35, 389-403.	0.5	24
52	Co-templating ionothermal synthesis and structure characterization of two new 2D layered aluminophosphates. Dalton Transactions, 2012, 41, 12408.	3.3	24
53	The Elusive Structure of Magadiite, Solved by 3D Electron Diffraction and Model Building. Chemistry of Materials, 2021, 33, 3207-3219.	6.7	24
54	Pyrrolidine silica sodalite and ethylamine silica sodalite – two new silica sodalite materials synthesized from different solid silica sources. Microporous and Mesoporous Materials, 2000, 39, 549-562.	4.4	23

#	Article	IF	CITATIONS
55	The crystal structure determination of the crystalline layered silicic acid H-RUB-18. Zeitschrift Fur Kristallographie - Crystalline Materials, 2002, 217, 233-241.	0.8	22
56	A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie - International Edition, 2020, 59, 15649-15655.	13.8	22
57	Cu-Exchanged CHA-Type Zeolite from Organic Template-Free Synthesis: An Effective Catalyst for NH ₃ -SCR. Industrial & Engineering Chemistry Research, 2020, 59, 7375-7382.	3.7	22
58	Experimentally Determined Standard Thermodynamic Properties of Synthetic MgSO ₄ ·4H ₂ O (Starkeyite) and MgSO ₄ ·3H ₂ O: A Revised Internally Consistent Thermodynamic Data Set for Magnesium Sulfate Hydrates. Astrobiology, 2012, 12, 1042-1054.	3.0	21
59	Mu-13: a new AlPO4 prepared with 4,13-diaza-18-crown-6 as a structuring agent. Microporous and Mesoporous Materials, 2001, 42, 177-189.	4.4	20
60	Synthesis and structure of pure silica-RUB-10 (structure type: RUT) obtained with pyrrolidine as the structure directing agent. Microporous and Mesoporous Materials, 2001, 43, 329-340.	4.4	20
61	Structure refinement of the as-synthesized and the calcined form of zeolite RUB-3 (RTE). Microporous and Mesoporous Materials, 1998, 26, 49-59.	4.4	19
62	Single crystal structure analysis of nonasil(pyr), (C4H10N)4[Si84B4O176]. Zeolites, 1995, 15, 517-525.	0.5	18
63	<i>Ab initio</i> structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 93-101.	0.1	17
64	A tangent formula derived from Patterson-function arguments. III. Structure determination of zeolitic and layered materials from low-resolution powder diffraction data. Acta Crystallographica Section A: Foundations and Advances, 1995, 51, 840-845.	0.3	16
65	The structure of the low temperature (20 K) form of zeolite ZSM-11 derived from ²⁹ Si MAS NMR spectroscopy, lattice energy minimization and Rietveld refinement. Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 221-227.	0.8	16
66	Synthesis and characterization of the new microporous gallophosphate Mu-8. Microporous and Mesoporous Materials, 2000, 39, 509-517.	4.4	15
67	New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy. IUCrJ, 2020, 7, 522-534.	2.2	15
68	Synthesis and characterization of zeolite Nu-1 prepared from near-neutral fluoride aluminosilicate gels. Zeolites, 1994, 14, 675-681.	0.5	14
69	Two polymorphs of a tetramethylammonium zincophosphate with diamond net-related frameworks containing [H3O4(P)4] hydroxyl nests: solution-mediated and mechanochemical phase transformations and crystal structures. Solid State Sciences, 2004, 6, 213-223.	3.2	14
70	Ab initio crystal structure determination of Na2Si3O7 from conventional powder diffraction data. Solid State Sciences, 2002, 4, 1285-1292.	3.2	13
71	Synthesis and structure of Mu-10: a novel microporous hydroxyaluminophosphate (CH3)2NH2·Al3P3O12OH closely related to AlPO4-EN3. Solid State Sciences, 1999, 1, 37-53.	3.2	12
72	Synthesis of ITQ-7 with a new template molecule and its crystal structure analysis in the as synthesized form. Comptes Rendus Chimie, 2005, 8, 341-352.	0.5	12

#	Article	IF	CITATIONS
73	Synthesis, characterization and structure analysis of UZM-22, a MEI-type zeolite framework structure. Microporous and Mesoporous Materials, 2010, 132, 43-53.	4.4	12
74	Synthesis and structure of RUB-35, a disordered material of the EUO-NES-NON family. Microporous and Mesoporous Materials, 2003, 64, 185-201.	4.4	11
75	P-V-T behavior of FeO(OH) and MnO(OH). Physics and Chemistry of Minerals, 2017, 44, 567-576.	0.8	11
76	Alteration and curing of framework defects by heating different as-made silica zeolites of the MFI framework type. Microporous and Mesoporous Materials, 2020, 291, 109683.	4.4	11
77	Ge-analogues of aluminium silicates: High-pressure synthesis and properties of orthorhombic Al2GeO4(OH)2. European Journal of Mineralogy, 1997, 9, 1147-1158.	1.3	11
78	A new layered (alumino) silicate and its transformation into a FER-type material by calcination. Studies in Surface Science and Catalysis, 1997, , 1949-1956.	1.5	10
79	Title is missing!. Journal of Materials Science, 2000, 35, 2965-2972.	3.7	10
80	Formation of clathrasil layers by secondary growth of DOH-type nuclei for gas separation applications. Microporous and Mesoporous Materials, 2008, 115, 3-10.	4.4	10
81	RUB-55, a new hydrous layer silicate with silicate layers known as motives of the sodalite and octadecasil frameworks: Synthesis and crystal structure. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 427-437.	0.8	10
82	Die lokale OberflÃ e henstruktur und â€zusammensetzung bestimmt die Wasserstoffentwicklung an Eisenâ€Nickelsulfiden. Angewandte Chemie, 2018, 130, 4157-4161.	2.0	10
83	Synthesis and characterization of boron containing MCM-41. Studies in Surface Science and Catalysis, 1995, 98, 17-18.	1.5	9
84	Crystal structure analyses of two TMA silicates with ordered defects: RUB-20, a layered zeolite precursor, and RUB-22, a microporous framework silicate. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, 243-262.	0.8	9
85	Powder X-ray diffraction and solid state NMR techniques forzeolite structure determination. Studies in Surface Science and Catalysis, 1995, 94, 78-100.	1.5	8
86	Two new members of the Silica-X family of materials: RUB-5, a silica zeolite with a very high framework density and RUB-6, a hydrous layer silicate. Microporous and Mesoporous Materials, 2020, 296, 109981.	4.4	8
87	The crystal structure of synthetic kenyaite, Na2Si20O40(OH)2·8H2O. Journal of Solid State Chemistry, 2021, 300, 122215.	2.9	8
88	Synthesis and characterization of Mu-11: a porous sodium trisilicate Na2Si3O7·H2O with 10-membered ring openings. Solid State Sciences, 2000, 2, 209-216.	0.7	7
89	lonothermal synthesis and crystal structure of a new layered nickel(II) diphosphate, DRM-1. Inorganic Chemistry Communication, 2010, 13, 1357-1360.	3.9	7
90	Rub-10, a boron containing analogue of zeolite Nu-1 Studies in Surface Science and Catalysis, 1994, 84, 435-443.	1.5	6

#	Article	IF	CITATIONS
91	Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers. Dalton Transactions, 2016, 45, 10155-10164.	3.3	6
92	Synthesis and characterization of the microporous silica phase RUB-3 (RTE). Microporous and Mesoporous Materials, 1998, 26, 37-48.	4.4	5
93	Synthesis and Crystal Structure of a New Fluorogallophosphate Named Mu-12. Chemistry of Materials, 2003, 15, 2614-2622.	6.7	5
94	Synthesis and general characterisation of RUB-22: A new micro-porous silicate possessing an interrupted framework structure. Studies in Surface Science and Catalysis, 2007, 170, 199-205.	1.5	4
95	Mn ²⁺ cation-directed ionothermal synthesis of an open-framework fluorinated aluminium phosphite–phosphate. RSC Advances, 2014, 4, 29310.	3.6	4
96	The crystal structure of the new boron containing zeolite RUB-13. Studies in Surface Science and Catalysis, 1995, 98, 262-263.	1.5	3
97	Multitechnique Analysis of The Lattice Structures of Highly Siliceous Zeolites. Studies in Surface Science and Catalysis, 1989, , 545-557.	1.5	2
98	A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie, 2020, 132, 15779-15785.	2.0	1
99	The effect of trivalent framework heteroatoms in Cu-CHA on the Selective Catalytic Reduction of NO. Applied Catalysis A: General, 2021, 626, 118326.	4.3	1
100	Synthesis and crystal structures of the decasils, a new family of porosils. Studies in Surface Science and Catalysis, 1995, 98, 38-39.	1.5	0
101	Zeolite Nu-1 prepared from near-neutral fluoride aluminosilicate gels. Studies in Surface Science and Catalysis, 1995, 98, 5-6.	1.5	0
102	Two Polymorphs of a Tetramethylammonium Zincophosphate with Diamond Net-Related Frameworks Containing [H3O4(P)4] Hydroxyl Nests: Solution-Mediated and Mechanochemical Phase Transformations and Crystal Structures ChemInform, 2004, 35, no.	0.0	0
103	Structure Analysis in Zeolite Research: From Framework Topologies to Functional Properties. Green Chemistry and Sustainable Technology, 2016, , 187-230.	0.7	0
104	Considerations on the symmetry of pure silica ITQ-7 zeolite (ISV) derived from 29 Si MAS NMR and Rietveld analysis. Microporous and Mesoporous Materials, 2016, 219, 306-310.	4.4	0
105	3. Natural and synthetic zeolites. , 2017, , 41-72.		0
106	The structure of PREFER, the layered precursor of silica-ferrierite, in its as-made, (C9H21N2)4[Si36O72(OH)4] * 8 H2O, and dehydrated form, (C9H21N2)4[Si36O72(OH)4]. Microporous and Mesoporous Materials, 2019, 288, 109597.	4.4	0
107	X-ray powder diffraction of synthetic Al-rich phlogopites: lattice parameters, polytypes, stacking faults, and implication of modulations. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s175-s175.	0.3	0