
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985573/publications.pdf Version: 2024-02-01

SELVA KLIMAD

#	Article	IF	CITATIONS
1	Enhancement and investigation of biodegradability of poly (methyl methacrylate) and poly (vinyl) Tj ETQq1 1 0.78	4314 rgB1 1.7	r <u>g</u> overlock
2	Laser induced graphene with biopolymer electrolyte for supercapacitor applications. Materials Today: Proceedings, 2022, 48, 365-370.	0.9	7
3	Bentonite Clay Liquid Crystals for High-Performance Supercapacitors. Journal of Electronic Materials, 2022, 51, 2192-2202.	1.0	2
4	The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review. Renewable and Sustainable Energy Reviews, 2022, 159, 112252.	8.2	41
5	Impedance spectroscopic study of biodegradable PVA/PVP doped TBAI ionic liquid polymer electrolyte. Journal of Industrial and Engineering Chemistry, 2022, 111, 43-50.	2.9	6
6	The improved performance of dyeâ€sensitized solar cells using coâ€sensitization and polymer gel electrolyte. International Journal of Energy Research, 2022, 46, 12974-12987.	2.2	7
7	Investigations on thermo-mechanical properties of organically modified polymer clay nanocomposites for packaging application. Polymers and Polymer Composites, 2021, 29, 1191-1199.	1.0	10
8	Recent developments in metalâ€free organic sensitizers derived from carbazole, triphenylamine, and phenothiazine for dyeâ€sensitized solar cells. International Journal of Energy Research, 2021, 45, 6584-6643.	2.2	51
9	Novel photosensitizer for dye-sensitized solar cell based on ionic liquid–doped blend polymer electrolyte. Journal of Solid State Electrochemistry, 2021, 25, 1461-1478.	1.2	16
10	Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. Journal of Electronic Materials, 2021, 50, 3187-3206.	1.0	80
11	Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review. Journal of Power Sources, 2021, 493, 229698.	4.0	96
12	High power density and improved H2 evolution reaction on MoO3/Activated carbon composite. International Journal of Hydrogen Energy, 2020, 45, 7801-7812.	3.8	13
13	Improving hydrogen evolution reaction and capacitive properties on CoS/MoS2 decorated carbon fibers. International Journal of Hydrogen Energy, 2020, 45, 7788-7800.	3.8	22
14	Synthesis and Characterization of Reduced Graphene Oxide for Supercapacitor Application with a Biodegradable Electrolyte. Journal of Electronic Materials, 2020, 49, 985-994.	1.0	19
15	Conductivity/Electrochemical Study of Polyvinyl pyrrolidone-Poly(vinyl alcohol)/I3â^' Thin Film Electrolyte for Integrated Dye-Sensitized Solar Cells and Supercapacitors. Journal of Electronic Materials, 2020, 49, 6325-6335.	1.0	10
16	Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. Journal of Alloys and Compounds, 2020, 831, 154745.	2.8	25
17	Green reduction of graphene oxide using Indian gooseberry (amla) extract for gas sensing applications. Journal of Environmental Chemical Engineering, 2020, 8, 103712.	3.3	24
18	Conductivity and Electrochemical Behavior of Plasticized Polymer Electrolyte for Dye-Sensitized Solar Cell Integrated Supercapacitor. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	1.1	1

#	Article	IF	CITATIONS
19	Supercapacitor studies of activated carbon functionalized with poly(ethylene dioxythiophene): Effects of surfactants, electrolyte concentration on electrochemical properties. Materials Letters, 2020, 273, 127978.	1.3	6
20	h-MoO3/Activated carbon nanocomposites for electrochemical applications. Ionics, 2019, 25, 607-616.	1.2	8
21	Sequential layer-by-layer engineered polypyrrole-activated carbon multilayer films: high-energy composite electrode materials for symmetrical supercapacitors. Materials Technology, 2019, 34, 126-134.	1.5	9
22	Carbon Fiber/Polyaniline as a High Performance Electrode for a Symmetrical Supercapacitor. Journal of Electronic Materials, 2019, 48, 1054-1065.	1.0	3
23	Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 914-921.	1.1	24
24	Multilayered electrode materials based on polyaniline/activated carbon composites for supercapacitor applications. International Journal of Hydrogen Energy, 2018, 43, 4067-4080.	3.8	48
25	Effect of Different Electrolytes on the Supercapacitor Behavior of Single and Multilayered Electrode Materials Based on Multiwalled Carbon Nanotube/Polyaniline Composite. Macromolecular Chemistry and Physics, 2018, 219, 1800213.	1.1	6
26	Synthesis and Characterization of Reduced Graphene Oxide- Polyaniline Composite for Supercapacitor Applications. Surface Engineering and Applied Electrochemistry, 2018, 54, 359-366.	0.3	6
27	Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Applied Surface Science, 2018, 453, 132-140.	3.1	109
28	An introduction of Biopolymer Electrolytes. , 2018, , 1-34.		12
29	Biopolymer Electrolyte for Supercapacitor. , 2018, , 53-116.		8
30	Methods of Preparation of Biopolymer Electrolytes. , 2018, , 35-52.		9
31	Biopolymer Electrolytes for Solar Cells and Electrochemical Cells. , 2018, , 117-149.		9
32	Green synthesis and electrochemical characterization of rGO–CuO nanocomposites for supercapacitor applications. Ionics, 2017, 23, 1267-1276.	1.2	67
33	Ionic conductivity and dielectric studies of acid doped cellulose acetate propionate solid electrolyte for supercapacitor. Polymer Engineering and Science, 2016, 56, 196-203.	1.5	10
34	Supercapacitor studies of electrochemically synthesized multi-layered polyaniline on stainless steel substrate. Ionics, 2016, 22, 1729-1739.	1.2	13
35	Conversion of pencil graphite to graphene/polypyrrole nanofiber composite electrodes and its doping effect on the supercapacitive properties. Polymer Engineering and Science, 2015, 55, 2118-2126.	1.5	12
36	Preparation and characterization of phosphoric acid-doped hydroxyethyl cellulose electrolyte for use in supercapacitor. Materials for Renewable and Sustainable Energy, 2015, 4, 1.	1.5	30

#	Article	IF	CITATIONS
37	Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor. Physica Scripta, 2015, 90, 095702.	1.2	8
38	High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes. Applied Surface Science, 2014, 296, 195-203.	3.1	64
39	Reduced graphene oxide derived from used cell graphite and its green fabrication as an eco-friendly supercapacitor. RSC Advances, 2014, 4, 60039-60051.	1.7	22
40	Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications. Laser Physics, 2014, 24, 045408.	0.6	12
41	Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 180, 12-19.	1.7	62
42	χ(3) and optical power limiting measurements of Polyaniline and its derivative Poly (o-toluidine) under CW regime. Optics Communications, 2013, 293, 125-132.	1.0	48
43	Ionic conductivity studies and dielectric studies of Poly(styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4. Journal of Applied Electrochemistry, 2013, 43, 21-29.	1.5	24
44	LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. lonics, 2013, 19, 277-285.	1.2	85
45	Miscibility of chitosan and poly(ethyleneglycol) blends in buffer solution. E-Polymers, 2012, 12, .	1.3	4
46	A facile hydrothermal route to synthesize novel PbI2 nanorods. Journal of Physics and Chemistry of Solids, 2012, 73, 1396-1400.	1.9	76
47	Miscibility Studies of Chitosan and Starch Blends in Buffer Solution. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 1099-1105.	1.2	12
48	Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochimica Acta, 2012, 78, 398-405.	2.6	139
49	Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor. Applied Surface Science, 2012, 263, 236-241.	3.1	83
50	Characterization of a newly synthesized organic nonlinear optical crystal: benzoyl valine. EPJ Applied Physics, 2010, 50, 20401.	0.3	5
51	Hybrid supercapacitor based on poly(aniline-co-m-anilicacid) and activated carbon in non-aqueous electrolyte. Korean Journal of Chemical Engineering, 2010, 27, 977-982.	1.2	16
52	Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B: Condensed Matter, 2010, 405, 2286-2289.	1.3	153
53	Miscibility of polymethylmethacrylate and polyethyleneglycol blends in tetrahydrofuran. Journal of Applied Polymer Science, 2009, 111, 452-460.	1.3	7
54	LiClO ₄ â€doped plasticized chitosan as biodegradable polymer gel electrolyte for supercapacitors. Journal of Applied Polymer Science, 2009, 114, 2445-2454.	1.3	32

#	Article	IF	CITATIONS
55	Polyvinyl alcohol–polystyrene sulphonic acid blend electrolyte for supercapacitor application. Physica B: Condensed Matter, 2009, 404, 1143-1147.	1.3	56
56	Activated carbonâ€polyethylenedioxythiophene composite electrodes for symmetrical supercapacitors. Journal of Applied Polymer Science, 2008, 107, 2165-2170.	1.3	48
57	LiClO ₄ doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. Journal of Applied Polymer Science, 2008, 110, 594-602.	1.3	77
58	N and p doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. Journal of Materials Science, 2007, 42, 8158-8162.	1.7	58
59	Biodegradability of PMMA Blends with Some Cellulose Derivatives. Journal of Polymers and the Environment, 2006, 14, 385-392.	2.4	36