Eric Chassande-Mottin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8985424/eric-chassande-mottin-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76 41,370 275 202 h-index g-index citations papers 51,674 4.98 291 5.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
275	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. <i>Classical and Quantum Gravity</i> , 2022 , 39, 045006	3.3	2
274	Constraints on dark photon dark matter using data from LIGOE and VirgoE third observing run. <i>Physical Review D</i> , 2022 , 105,	4.9	2
273	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGONirgo Run O3b. <i>Astrophysical Journal</i> , 2022 , 928, 186	4.7	1
272	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. <i>Physical Review D</i> , 2022 , 105,	4.9	4
271	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	4
270	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2021 , 104,	4.9	1
269	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. <i>Physical Review D</i> , 2021 , 104,	4.9	15
268	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
267	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. <i>Physical Review D</i> , 2021 , 103,	4.9	15
266	Progenitors of low-mass binary black-hole mergers in the isolated binary evolution scenario. <i>Astronomy and Astrophysics</i> , 2021 , 649, A114	5.1	8
265	Population Properties of Compact Objects from the Second LIGOVirgo Gravitational-Wave Transient Catalog. <i>Astrophysical Journal Letters</i> , 2021 , 913, L7	7.9	194
264	Observation of Gravitational Waves from Two Neutron Star B lack Hole Coalescences. <i>Astrophysical Journal Letters</i> , 2021 , 915, L5	7.9	142
263	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. <i>Physical Review D</i> , 2021 , 103,	4.9	81
262	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21
261	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. <i>Physical Review X</i> , 2021 , 11,	9.1	311
260	The potential role of binary neutron star merger afterglows in multimessenger cosmology. <i>Astronomy and Astrophysics</i> , 2021 , 652, A1	5.1	3
259	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced VirgoB third observing run. <i>Physical Review D</i> , 2021 , 104,	4.9	33

(2020-2021)

258	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo first three observing runs. <i>Physical Review D</i> , 2021 , 104,	4.9	12
257	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGON irgo Run O3a. <i>Astrophysical Journal</i> , 2021 , 915, 86	4.7	6
256	On the importance of source population models for gravitational-wave cosmology. <i>Physical Review D</i> , 2021 , 104,	4.9	5
255	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGON Third Observing Run. <i>Astrophysical Journal</i> , 2021 , 923, 14	4.7	4
254	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. <i>Astrophysical Journal Letters</i> , 2020 , 896, L44	7.9	571
253	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
252	Model comparison from LIGON irgo data on GW170817 binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69
251	A guide to LIGON irgo detector noise and extraction of transient gravitational-wave signals. <i>Classical and Quantum Gravity</i> , 2020 , 37, 055002	3.3	78
250	Advanced Virgo Status. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012010	0.3	8
249	Properties and Astrophysical Implications of the 150 M? Binary Black Hole Merger GW190521. <i>Astrophysical Journal Letters</i> , 2020 , 900, L13	7.9	207
248	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. <i>Astrophysical Journal Letters</i> , 2020 , 902, L21	7.9	32
247	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
246	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. <i>Astrophysical Journal</i> , 2020 , 893, 100	4.7	9
245	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
244	Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. <i>Physical Review Letters</i> , 2020 , 125, 131101	7.4	17
243	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. <i>Physical Review D</i> , 2020 , 102,	4.9	212
242	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7
241	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. <i>Physical Review D</i> , 2020 , 101.	4.9	36

240	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
239	Directional limits on persistent gravitational waves using data from Advanced LIGOE first two observing runs. <i>Physical Review D</i> , 2019 , 100,	4.9	31
238	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. <i>Physical Review X</i> , 2019 , 9,	9.1	1169
237	Search for the isotropic stochastic background using data from Advanced LIGOE second observing run. <i>Physical Review D</i> , 2019 , 100,	4.9	117
236	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
235	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
234	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
233	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. <i>Astrophysical Journal</i> , 2019 , 875, 122	4.7	45
232	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
231	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
230	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGOE Second Observing Run. <i>Astrophysical Journal</i> , 2019 , 874, 163	4.7	17
229	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	43
228	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015 2017 LIGO Data. <i>Astrophysical Journal</i> , 2019 , 879, 10	4.7	63
227	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. <i>Physical Review D</i> , 2019 , 100,	4.9	81
226	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39
225	Tests of General Relativity with GW170817. <i>Physical Review Letters</i> , 2019 , 123, 011102	7.4	204
224	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36
223	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39

(2018-2019)

222	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
221	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
220	Compact radio emission indicates a structured jet was produced by a binary neutron star merger. <i>Science</i> , 2019 , 363, 968-971	33.3	176
219	Astrophysical signal consistency test adapted for gravitational-wave transient searches. <i>Physical Review D</i> , 2019 , 100,	4.9	5
218	Gravitational wave observations, distance measurement uncertainties, and cosmology. <i>Physical Review D</i> , 2019 , 100,	4.9	7
217	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. <i>Physical Review D</i> , 2019 , 100,	4.9	258
216	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
215	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
214	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. <i>Physical Review D</i> , 2019 , 100,	4.9	31
213	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9,	9.1	423
213	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9, Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	9.1	423 62
	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first		
212	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010 GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary	3.3	62
212	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010 GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101 All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing	3·3 7·4	62 120
212 211 210	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOB first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010 GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101 All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009 First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> ,	3·3 7·4 3·3	62 120 12
212 211 210 209	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOB first observing run. Classical and Quantum Gravity, 2018, 35, 065010 GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101 All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009 First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced	3·3 7·4 3·3 7·4	62 120 12 50
212 211 210 209 208	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOB first observing run. Classical and Quantum Gravity, 2018, 35, 065010 GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101 All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009 First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3 Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D,	3·3 7·4 3·3 7·4	62 120 12 50 543

204	Non-parametric characterization of gravitational-wave polarizations 2018,		2
203	Earthquake Early Warning Using Future Generation Gravity Strainmeters. <i>Journal of Geophysical Research: Solid Earth</i> , 2018 , 123, 10,889	3.6	8
202	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
201	Driving unmodeled gravitational-wave transient searches using astrophysical information. <i>Physical Review D</i> , 2018 , 98,	4.9	2
200	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
199	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
198	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003	0.3	4
197	The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations. <i>Astronomy and Astrophysics</i> , 2018 , 613, L1	5.1	120
196	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
195	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
194	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
193	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
192	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
191	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
190	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
189	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
188	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
187	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. <i>Nature</i> , 2017 , 551, 67-70	50.4	444

(2016-2017)

186	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
185	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
184	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
183	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
182	Where and When: Optimal Scheduling of the Electromagnetic Follow-up of Gravitational-wave Events Based on Counterpart Light-curve Models. <i>Astrophysical Journal</i> , 2017 , 846, 62	4.7	25
181	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
180	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
179	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
178	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. Astrophysical Journal Letters, 2017 , 850, L39	7.9	127
177	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
176	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
175	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
174	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5
173	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
172	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
171	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
170	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
169	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183

168	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
167	Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. <i>Nature Communications</i> , 2016 , 7, 13349	17.4	39
166	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
165	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
164	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
163	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
162	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
161	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
160	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
159	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
158	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
157	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
156	SUPPLEMENT: IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38
155	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
154	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101	7.4	837
153	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
152	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
151	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723

(2014-2016)

150	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
149	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
148	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33,	3.3	155
147	SUPPLEMENT: ITHE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52
146	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
145	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
144	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
143	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
142			
141	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
140	NenUFAR: Instrument description and science case 2015,		8
139	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
138	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	79°
137	The Advanced Virgo detector. <i>Journal of Physics: Conference Series</i> , 2015 , 610, 012014	0.3	18
136	Transient gravity perturbations induced by earthquake rupture. <i>Geophysical Journal International</i> , 2015 , 201, 1416-1425	2.6	36
135	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
134	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
133	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014 , 785, 119	4.7	109

132	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18
131	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
130	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\textit{D} 010. \) Physical Review D, 2014 , 89,	4.9	26
129	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
128	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
127	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
126	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165013	3.3	8
125	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51
124	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54
123	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
122	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74
121	Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos. <i>Reviews of Modern Physics</i> , 2013 , 85, 1401-1420	40.5	38
120	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textit{0} 10. \textit{Physical Review D, 2013}, 87, \)	4.9	91
119	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
118	Data analysis challenges in transient gravitational-wave astronomy 2013,		1
117	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. <i>Classical and Quantum Gravity</i> , 2013 , 30, 055017	3.3	9
116	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
115	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122

(2012-2013)

114	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57
113	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
112	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
111	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
110	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
109	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
108	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
107	On Phase-Magnitude Relationships in the Short-Time Fourier Transform. <i>IEEE Signal Processing Letters</i> , 2012 , 19, 267-270	3.2	67
106	Virgo: a laser interferometer to detect gravitational waves. <i>Journal of Instrumentation</i> , 2012 , 7, P0301	2- <u>R</u> 030	12:12
			1
105	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013	3.3	256
105	Scientific objectives of Einstein Telescope. <i>Classical and Quantum Gravity</i> , 2012 , 29, 124013 Characterization of the Virgo seismic environment. <i>Classical and Quantum Gravity</i> , 2012 , 29, 025005	3.3	256 4
104	Characterization of the Virgo seismic environment. <i>Classical and Quantum Gravity</i> , 2012 , 29, 025005 SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS.	3.3	4
104	Characterization of the Virgo seismic environment. <i>Classical and Quantum Gravity</i> , 2012 , 29, 025005 SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 203, 28 The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and</i>	3.3	57
104	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005 SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28 The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002 Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run	3·3 8 3·3	4 57 59
104	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005 SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28 The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002 Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. Physical Review D, 2012, 85, Multimessenger science reach and analysis method for common sources of gravitational waves and	3·3 8 3·3 4·9	4 57 59 3
104 103 102 101	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005 SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28 The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002 Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. Physical Review D, 2012, 85, Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 2012, 85,	3·3 8 3·3 4·9	4 57 59 3 30

96	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
95	Performance of a Chirplet-based analysis for gravitational-waves from binary black-hole mergers. Journal of Physics: Conference Series, 2012 , 363, 012031	0.3	4
94	The NoEMi (Noise Frequency Event Miner) framework. <i>Journal of Physics: Conference Series</i> , 2012 , 363, 012037	0.3	10
93	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
92	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. <i>International Journal of Modern Physics D</i> , 2011 , 20, 2075-2079	2.2	4
91	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. <i>Journal of Low Frequency Noise Vibration and Active Control</i> , 2011 , 30, 63-79	1.5	19
90	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
89	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. <i>Astrophysical Journal</i> , 2011 , 737, 93	4.7	75
88	Multimessenger astronomy with the Einstein Telescope. <i>General Relativity and Gravitation</i> , 2011 , 43, 437-464	2.3	25
87	Automatic Alignment system during the second science run of the Virgo interferometer. <i>Astroparticle Physics</i> , 2011 , 34, 327-332	2.4	5
86	Performance of the Virgo interferometer longitudinal control system during the second science run. <i>Astroparticle Physics</i> , 2011 , 34, 521-527	2.4	10
85	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. <i>Physical Review D</i> , 2011 , 83,	4.9	77
84	Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. <i>Astroparticle Physics</i> , 2011 , 35, 1-7	2.4	55
83	A state observer for the Virgo inverted pendulum. <i>Review of Scientific Instruments</i> , 2011 , 82, 094502	1.7	6
82	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	7.4	85
81	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140
80	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
79	In-vacuum Faraday isolation remote tuning. <i>Applied Optics</i> , 2010 , 49, 4780-90	0.2	8

(2008-2010)

78	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	4.9	81
77	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453	3-4:461	79
76	Joint searches for gravitational waves and high-energy neutrinos. <i>Journal of Physics: Conference Series</i> , 2010 , 243, 012002	0.3	6
75	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004	0.3	
74	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012015	0.3	7
73	Status and perspectives of the Virgo gravitational wave detector. <i>Journal of Physics: Conference Series</i> , 2010 , 203, 012074	0.3	22
72	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. <i>Astrophysical Journal</i> , 2010 , 715, 1438-1	452	54
71	Measurements of Superattenuator seismic isolation by Virgo interferometer. <i>Astroparticle Physics</i> , 2010 , 33, 182-189	2.4	54
70	Automatic Alignment for the first science run of the Virgo interferometer. <i>Astroparticle Physics</i> , 2010 , 33, 131-139	2.4	10
69	2009,		1
69 68	Laser with an in-loop relative frequency stability of 1.0🗓 0 🗓 1 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79,	2.6	6
	Laser with an in-loop relative frequency stability of 1.0🛮 0 🗷 1 on a 100-ms time scale for	2.6	
68	Laser with an in-loop relative frequency stability of 1.010101 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79, JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. <i>International Journal of</i>		6
68 67	Laser with an in-loop relative frequency stability of 1.01011 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79, JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. <i>International Journal of Modern Physics D</i> , 2009 , 18, 1655-1659	2.2	6
68 67 66	Laser with an in-loop relative frequency stability of 1.0 10 1 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79, JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. <i>International Journal of Modern Physics D</i> , 2009 , 18, 1655-1659 Gravitational wave burst search in the Virgo C7 data. <i>Classical and Quantum Gravity</i> , 2009 , 26, 085009 An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> ,	2.2	6 22 15
68 67 66 65	Laser with an in-loop relative frequency stability of 1.01001 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79, JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. <i>International Journal of Modern Physics D</i> , 2009 , 18, 1655-1659 Gravitational wave burst search in the Virgo C7 data. <i>Classical and Quantum Gravity</i> , 2009 , 26, 085009 An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	2.2 3·3 50·4	6 22 15 267
68 67 66 65 64	Laser with an in-loop relative frequency stability of 1.01011 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009, 79, JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. <i>International Journal of Modern Physics D</i> , 2009, 18, 1655-1659 Gravitational wave burst search in the Virgo C7 data. <i>Classical and Quantum Gravity</i> , 2009, 26, 085009 An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009, 460, 990-4 In-vacuum optical isolation changes by heating in a Faraday isolator. <i>Applied Optics</i> , 2008, 47, 5853-61 Best network chirplet chain: Near-optimal coherent detection of unmodeled gravitational wave	2.2 3.3 50.4	6 22 15 267 10

60	The Virgo 3 km interferometer for gravitational wave detection. <i>Journal of Optics</i> , 2008 , 10, 064009		29
59	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114046	3.3	
58	Search for gravitational waves associated with GRB 050915a using the Virgo detector. <i>Classical and Quantum Gravity</i> , 2008 , 25, 225001	3.3	23
57	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045	3.3	115
56	Virgo status. Classical and Quantum Gravity, 2008 , 25, 184001	3.3	110
55	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 1840	10333	6
54	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232	1.7	3
53	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38	2.4	13
52	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487	4.6	7
51	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2007 , 24, S617-S625	3.3	10
50	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. <i>Classical and Quantum Gravity</i> , 2007 , 24, S671-S679	3.3	16
49	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. <i>Classical and Quantum Gravity</i> , 2007 , 24, S491-S499	3.3	13
48	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443	3.3	8
47	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. <i>Classical and Quantum Gravity</i> , 2007 , 24, S415-S422	3.3	4
46	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388	3.3	51
45	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-57	7 53	8
44	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2006 , 55, 1985-1995	5.2	3
43	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. <i>Classical and Quantum Gravity</i> , 2006 , 23, S187-S196	3.3	6

42	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836	3.3	
41	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89	3.3	19
40	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101	3.3	13
39	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69	3.3	79
38	Testing Virgo burst detection tools on commissioning run data. <i>Classical and Quantum Gravity</i> , 2006 , 23, S197-S205	3.3	3
37	The Virgo status. Classical and Quantum Gravity, 2006 , 23, S635-S642	3.3	166
36	Best chirplet chain: Near-optimal detection of gravitational wave chirps. <i>Physical Review D</i> , 2006 , 73,	4.9	25
35	Virgo upgrade investigations. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 223-229	0.3	19
34	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43	0.3	
33	Environmental noise studies in Virgo. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 80-88	0.3	3
32	Discrete time and frequency Wigner-Ville distribution: Moyal's formula and aliasing. <i>IEEE Signal Processing Letters</i> , 2005 , 12, 508-511	3.2	19
31	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. <i>Astroparticle Physics</i> , 2005 , 23, 557-565	2.4	69
30	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189	-S ₃ 131 96	5 5
29	A first study of environmental noise coupling to the Virgo interferometer. <i>Classical and Quantum Gravity</i> , 2005 , 22, S1069-S1077	3.3	4
28	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191	3.3	2
27	Status of Virgo. Classical and Quantum Gravity, 2005 , 22, S869-S880	3.3	52
26	NAP: a tool for noise data analysis. Application to Virgo engineering runs. <i>Classical and Quantum Gravity</i> , 2005 , 22, S1041-S1049	3.3	5
25	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. <i>Classical and Quantum Gravity</i> , 2005 , 22, S1139-S1148	3.3	5

24	Search for inspiralling binary events in the Virgo Engineering Run data. <i>Classical and Quantum Gravity</i> , 2004 , 21, S709-S716	3.3	11
23	The VIRGO large mirrors: a challenge for low loss coatings. <i>Classical and Quantum Gravity</i> , 2004 , 21, S9	35 3 S ₉ 94	· 5 21
22	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394	3.3	87
21	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S3	39 5- §40	024
20	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. <i>Classical and Quantum Gravity</i> , 2004 , 21, S425-S432	3.3	5
19	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440	3.3	19
18	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. <i>Classical and Quantum Gravity</i> , 2004 , 21, S717-S727	3.3	1
17	First locking of the Virgo central area interferometer with suspension hierarchical control. <i>Astroparticle Physics</i> , 2004 , 20, 629-640	2.4	12
16	The commissioning of the central interferometer of the Virgo gravitational wave detector. <i>Astroparticle Physics</i> , 2004 , 21, 1-22	2.4	18
15	A local control system for the test masses of the Virgo gravitational wave detector. <i>Astroparticle Physics</i> , 2004 , 20, 617-628	2.4	16
14	Status of VIRGO 2004 , 5500, 58		2
13	Low-loss coatings for the VIRGO large mirrors 2004 ,		11
12	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. <i>Classical and Quantum Gravity</i> , 2003 , 20, S915-S924	3.3	7
11	Learning approach to the detection of gravitational wave transients. <i>Physical Review D</i> , 2003 , 67,	4.9	5
10	Time-Frequency/Time-Scale Reassignment 2003 , 233-267		13
9	Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients. <i>Physical Review D</i> , 2001 , 63,	4.9	7
8	ADAPTIVE FILTERING TECHNIQUES FOR INTERFEROMETRIC DATA PREPARATION: REMOVAL OF LONG-TERM SINUSOIDAL SIGNALS AND OSCILLATORY TRANSIENTS. <i>International Journal of Modern Physics D</i> , 2000 , 09, 275-279	2.2	3
7	On the Time E requency Detection of Chirps1. <i>Applied and Computational Harmonic Analysis</i> , 1999 , 6, 252-281	3.1	60

LIST OF PUBLICATIONS

6	On the Statistics of Spectrogram Reassignment Vectors. <i>Multidimensional Systems and Signal Processing</i> , 1998 , 9, 355-362	1.8	14
5	Differential reassignment. <i>IEEE Signal Processing Letters</i> , 1997 , 4, 293-294	3.2	94
4	Reassigned scalograms and their fast algorithms 1995 , 2569, 152		3
3	On the stationary phase approximation of chirp spectra		7
2	Supervised time-frequency reassignment		5
1	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. <i>Astronomy and Astrophysics</i> ,	5.1	4