
Eric Chassande-Mottin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985424/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
11	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
12	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
13	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
14	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
15	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
16	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
17	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><aml:mtext> stretchy="false">ኙ</aml:mtext></mml:mrow></mml:math 	ıml ma text>	<naatataasub></naatataasub>
	Letters, 2020, 125, 101102. Prospects for observing and localizing gravitational wave transients with Advanced LICO. Advanced		

18 Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.

26.7 808

#	Article	IF	CITATIONS
19	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
20	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
21	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
22	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
23	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
24	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
25	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
26	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
27	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
28	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
29	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
30	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
31	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
32	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
33	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
34	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
35	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
36	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303

#	Article	IF	CITATIONS
37	Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science, 2019, 363, 968-971.	12.6	272
38	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
39	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
40	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
41	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
42	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
43	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
44	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
45	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
46	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
47	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
48	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
49	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
50	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	4.0	179
51	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
52	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
53	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
54	The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in <i>XMM-Newton</i> observations. Astronomy and Astrophysics, 2018, 613, L1.	5.1	150

#	Article	IF	CITATIONS
55	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	4.0	148
56	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
57	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
58	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
59	Differential reassignment. IEEE Signal Processing Letters, 1997, 4, 293-294.	3.6	139
60	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
61	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
62	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
63	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
64	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
65	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	4.0	116
66	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
67	On Phase-Magnitude Relationships in the Short-Time Fourier Transform. IEEE Signal Processing Letters, 2012, 19, 267-270.	3.6	110
68	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
69	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
70	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
71	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
72	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104

#	Article	IF	CITATIONS
73	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
74	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
75	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
76	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
77	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
78	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
79	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
80	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
81	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
82	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	4.0	89
83	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
84	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
85	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
86	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
87	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
88	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
89	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
90	On the Time–Frequency Detection of Chirps1. Applied and Computational Harmonic Analysis, 1999, 6, 252-281.	2.2	84

#	Article	IF	CITATIONS
91	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
92	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
93	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	4.0	83
94	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	4.3	79
95	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
96	<i>Colloquium</i> : Multimessenger astronomy with gravitational waves and high-energy neutrinos. Reviews of Modern Physics, 2013, 85, 1401-1420.	45.6	76
97	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
98	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
99	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
100	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
101	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
102	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
103	Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 2011, 35, 1-7.	4.3	69
104	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
105	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
106	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
107	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
108	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68

#	Article	IF	CITATIONS
109	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
110	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
111	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
112	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
113	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
114	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
115	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	4.3	62
116	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
117	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62
118	Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nature Communications, 2016, 7, 13349.	12.8	61
119	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
120	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
121	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
122	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
123	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
124	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
125	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
126	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59

#	Article	IF	CITATIONS
127	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
128	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
129	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
130	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	4.0	54
131	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
132	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
133	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
134	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
135	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
136	On the importance of source population models for gravitational-wave cosmology. Physical Review D, 2021, 104, .	4.7	48
137	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
138	Transient gravity perturbations induced by earthquake rupture. Geophysical Journal International, 2015, 201, 1416-1425.	2.4	47
139	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
140	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
141	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
142	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
143	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
144	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43

#	Article	IF	CITATIONS
145	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	4.7	43
146	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
147	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
148	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 C	0 rgBT /C 4:0	overlock 10 Tf
149	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
150	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
151	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mi>p</mml:mi> </mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
152	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
153	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
154	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
155	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	33
156	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
157	Discrete time and frequency Wigner-Ville distribution: Moyal's formula and aliasing. IEEE Signal Processing Letters, 2005, 12, 508-511.	3.6	32
158	Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Physical Review D, 2012, 85, .	4.7	32
159	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>l³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	7.8	32
160	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
161	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	5.1	32
162	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31

#	Article	IF	CITATIONS
163	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
164	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
165	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	4.0	30
166	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
167	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.4	29
168	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
169	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
170	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
171	Best chirplet chain: Near-optimal detection of gravitational wave chirps. Physical Review D, 2006, 73, .	4.7	28
172	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
173	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	2.9	28
174	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
175	Where and When: Optimal Scheduling of the Electromagnetic Follow-up of Gravitational-wave Events Based on Counterpart Light-curve Models. Astrophysical Journal, 2017, 846, 62.	4.5	28
176	Multimessenger astronomy with the Einstein Telescope. General Relativity and Gravitation, 2011, 43, 437-464.	2.0	27
177	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
178	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	4.7	27
179	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
180	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	4.0	25

#	Article	IF	CITATIONS
181	Making reassignment adjustable: The Levenberg-Marquardt approach. , 2012, , .		24
182	JOINT SEARCHES BETWEEN GRAVITATIONAL-WAVE INTERFEROMETERS AND HIGH-ENERGY NEUTRINO TELESCOPES: SCIENCE REACH AND ANALYSIS STRATEGIES. International Journal of Modern Physics D, 2009, 18, 1655-1659.	2.1	23
183	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	4.3	22
184	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	4.3	22
185	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	4.0	22
186	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
187	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.4	21
188	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
189	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21
190	Progenitors of low-mass binary black-hole mergers in the isolated binary evolution scenario. Astronomy and Astrophysics, 2021, 649, A114.	5.1	20
191	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
192	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
193	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
194	On the Statistics of Spectrogram Reassignment Vectors. Multidimensional Systems and Signal Processing, 1998, 9, 355-362.	2.6	19
195	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	4.3	19
196	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
197	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
198	Earthquake Early Warning Using Future Generation Gravity Strainmeters. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,889.	3.4	19

#	Article	IF	CITATIONS
199	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
200	NenUFAR: Instrument description and science case. , 2015, , .		18
201	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
202	Time-Frequency/Time-Scale Reassignment. , 2003, , 233-267.		18
203	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	4.7	18
204	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
205	Gravitational wave observations, distance measurement uncertainties, and cosmology. Physical Review D, 2019, 100, .	4.7	17
206	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	4.0	16
207	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
208	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
209	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
210	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
211	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
212	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	4.0	13
213	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13
214	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
215	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	4.0	13
216	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	4.3	13

#	Article	IF	CITATIONS
217	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.4	12
218	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
219	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	4.3	11
220	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11
221	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10
222	Best network chirplet chain: Near-optimal coherent detection of unmodeled gravitational wave chirps with a network of detectors. Physical Review D, 2008, 77, .	4.7	10
223	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
224	The potential role of binary neutron star merger afterglows in multimessenger cosmology. Astronomy and Astrophysics, 2021, 652, A1.	5.1	10
225	On the stationary phase approximation of chirp spectra. , 0, , .		9
226	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
227	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
228	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
229	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
230	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
231	Supervised time-frequency reassignment. , 0, , .		8
232	Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients. Physical Review D, 2001, 63, .	4.7	8
233	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8
234	Laser with an in-loop relative frequency stability of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.5 10	

xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn^25>10</mml:mn></n a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .

#	Article	IF	CITATIONS
235	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.4	8
236	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
237	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	1.3	8
238	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	4.0	7
239	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	4.0	7
240	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	4.0	7
241	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	3.8	7
242	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
243	Joint searches for gravitational waves and high-energy neutrinos. Journal of Physics: Conference Series, 2010, 243, 012002.	0.4	7
244	Learning approach to the detection of gravitational wave transients. Physical Review D, 2003, 67, .	4.7	6
245	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	4.0	6
246	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	4.3	6
247	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
248	Astrophysical signal consistency test adapted for gravitational-wave transient searches. Physical Review D, 2019, 100, .	4.7	6
249	<title>Reassigned scalograms and their fast algorithms</title> ., 1995, 2569, 152.		5
250	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	4.0	5
251	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	4.0	5
252	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	4.0	5

#	Article	IF	CITATIONS
253	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	4.7	5
254	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
255	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	4.0	5
256	Performance of a Chirplet-based analysis for gravitational-waves from binary black-hole mergers. Journal of Physics: Conference Series, 2012, 363, 012031.	0.4	5
257	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	4.0	4
258	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.4	4
259	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4
260	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 × 10â^21 on a 100 ms time scale. , 2009, , .		4
261	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	2.1	4
262	Non-parametric characterization of gravitational-wave polarizations. , 2018, , .		4
263	Driving unmodeled gravitational-wave transient searches using astrophysical information. Physical Review D, 2018, 98, .	4.7	4
264	ADAPTIVE FILTERING TECHNIQUES FOR INTERFEROMETRIC DATA PREPARATION: REMOVAL OF LONG-TERM SINUSOIDAL SIGNALS AND OSCILLATORY TRANSIENTS. International Journal of Modern Physics D, 2000, 09, 275-279.	2.1	3
265	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	4.0	3
266	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
267	Multimessenger Sources of Gravitational Waves and High-energy Neutrinos: Science Reach and Analysis Method. Journal of Physics: Conference Series, 2012, 363, 012022.	0.4	3
268	Status of VIRGO. , 2004, 5500, 58.		2
269	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	4.0	2
270	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.4	2

#	Article	IF	CITATIONS
271	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
272	Structured sparsity regularization for gravitational- wave polarization reconstruction. , 2018, , .		2
273	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
274	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	4.0	1
275	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
276	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
277	Data analysis challenges in transient gravitational-wave astronomy. , 2013, , .		1
278	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
279	Estimating singularities with reassigned distributions. , 0, , .		0
280	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.4	0
281	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	4.0	0
282	Chains of chirplets for the detection of gravitational wave chirps. Proceedings of SPIE, 2007, , .	0.8	0
283	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	4.0	0
284	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.4	0
285	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
286	STATUS OF THE VIRGO EXPERIMENT. , 2004, , .		0
287	Advanced Virgo Status. , 2017, , .		0