
Ming Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985292/publications.pdf Version: 2024-02-01

MINCLU

#	Article	IF	CITATIONS
1	Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. International Journal of Molecular Sciences, 2016, 17, 1380.	1.8	80
2	Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. Journal of Nanobiotechnology, 2021, 19, 380.	4.2	64
3	Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell. Stem Cells International, 2016, 2016, 1-16.	1.2	55
4	Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017). Cell Transplantation, 2018, 27, 310-324.	1.2	40
5	Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α. Aging, 2020, 12, 10931-10950.	1.4	39
6	Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy. Stem Cell Research and Therapy, 2021, 12, 413.	2.4	38
7	Molecular basis of the tarantula toxin jingzhaotoxinâ€III (βâ€TRTXâ€Cj1α) interacting with voltage sensors in sodium channel subtype Nav1.5. FASEB Journal, 2011, 25, 3177-3185.	0.2	32
8	Olfactory mucosa: a rich source of cell therapy for central nervous system repair. Reviews in the Neurosciences, 2015, 26, 281-93.	1.4	30
9	Shotgun Proteomics and Network Analysis between Plasma Membrane and Extracellular Matrix Proteins from Rat Olfactory Ensheathing Cells. Cell Transplantation, 2010, 19, 133-146.	1.2	27
10	lschemic-hypoxic preconditioning enhances the mitochondrial function recovery of transplanted olfactory mucosa mesenchymal stem cells via miR-181a signaling in ischemic stroke. Aging, 2021, 13, 11234-11256.	1.4	25
11	Olfactory Mucosa Mesenchymal Stem Cells Alleviate Cerebral Ischemia/Reperfusion Injury Via Golgi Apparatus Secretory Pathway Ca2+ -ATPase Isoform1. Frontiers in Cell and Developmental Biology, 2020, 8, 586541.	1.8	22
12	Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2020, 15, 332-339.	0.6	22
13	Insight into the proteomic profiling of exosomes secreted by human OM-MSCs reveals a new potential therapy. Biomedicine and Pharmacotherapy, 2020, 131, 110584.	2.5	21
14	Facile Electrochemical Microbiosensor Based on <i>In Situ</i> Self-Assembly of Ag Nanoparticles Coated on Ti ₃ C ₂ T <i>_x</i> for <i>In Vivo</i> Measurements of Chloride Ions in the PD Mouse Brain. Analytical Chemistry, 2021, 93, 7647-7656.	3.2	18
15	Electrophysiological characterization of NSCs after differentiation induced by OEC conditioned medium. Acta Neurochirurgica, 2011, 153, 2085-2090.	0.9	17
16	Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α. Cell Transplantation, 2017, 26, 1452-1461.	1.2	17
17	Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression. Frontiers in Cellular Neuroscience, 2020, 14, 580206.	1.8	16
18	Effects of the Insulted Neuronal Cells-Derived Extracellular Vesicles on the Survival of Umbilical Cord-Derived Mesenchymal Stem Cells following Cerebral Ischemia/Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-26.	1.9	16

Ming Lu

#	Article	IF	CITATIONS
19	Hypoxia-preconditioned mesenchymal stem cells attenuate microglial pyroptosis after intracerebral hemorrhage. Annals of Translational Medicine, 2021, 9, 1362-1362.	0.7	16
20	Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury. Reviews in the Neurosciences, 2016, 27, 259-270.	1.4	14
21	Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Analytical Chemistry, 2021, 93, 16598-16607.	3.2	13
22	Hyperthermia-Conditioned OECs Serum-Free–Conditioned Medium Induce NSC Differentiation Into Neuron More Efficiently by the Upregulation of HIF-1 Alpha and Binding Activity. Transplantation, 2014, 97, 1225-1232.	0.5	12
23	<i>In Vivo</i> Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sensors, 2022, 7, 235-244.	4.0	12
24	Efficient Electrochemical Microsensor for <i>In Vivo</i> Monitoring of H ₂ O ₂ in PD Mouse Brain: Rational Design and Synthesis of Recognition Molecules. Analytical Chemistry, 2022, 94, 9130-9139.	3.2	11
25	Electrophysiological Characterisation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Induced by Olfactory Ensheathing Cell-Conditioned Medium. Neurochemical Research, 2013, 38, 2483-2489.	1.6	10
26	OM-MSCs Alleviate the Golgi Apparatus Stress Response following Cerebral Ischemia/Reperfusion Injury via the PEDF-PI3K/Akt/mTOR Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	9
27	Regulation of neuronal-glial fate specification by long non-coding RNAs. Reviews in the Neurosciences, 2016, 27, 491-499.	1.4	8
28	Hyperthermia influences fate determination of neural stem cells with lncRNAs alterations in the early differentiation. PLoS ONE, 2017, 12, e0171359.	1.1	8
29	Regulation and direction of umbilical cord blood mesenchymal stem cells to adopt neuronal fate. International Journal of Neuroscience, 2014, 124, 149-159.	0.8	7
30	Differentiation of human olfactory mucosa mesenchymal stem cells into photoreceptor cells in vitro. International Journal of Ophthalmology, 2017, 10, 1504-1509.	0.5	7
31	Standards of clinical-grade olfactory ensheathing cell culture and quality control (2020 China) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10 T
32	Hypoxic and ischemic effects on gene and protein expression levels of paracrine factors by human olfactory mucosa mesenchymal-like stem cells. Journal of Neurorestoratology, 2016, Volume 4, 85-94.	1.1	6
33	Hypoxic conditioned promotes the proliferation of human olfactory mucosa mesenchymal stem cells and relevant IncRNA and mRNA analysis. Life Sciences, 2021, 265, 118861.	2.0	6
34	A phosphoproteomics study reveals a defined genetic program for neural lineage commitment of neural stem cells induced by olfactory ensheathing cell-conditioned medium. Pharmacological Research, 2021, 172, 105797.	3.1	4
35	Olfactory ensheathing cells facilitate neurite sprouting and outgrowth by secreting high levels of hevin. Journal of Chemical Neuroanatomy, 2020, 104, 101728.	1.0	3
36	<div>Effects of IGFBP-2 on proliferation and differentiation in neural stem cell line C17.2</div> . Journal of Neurorestoratology, 2017, Volume 5, 143-153.	1.1	2

#	Article	IF	CITATIONS
37	Repair of spinal cord injury by hypoxia-inducible factor-1a-expressing neural stem cells. Journal of Medical Hypotheses and Ideas, 2014, 8, 27-29.	0.7	1