Hikari Kirimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8985224/publications.pdf Version: 2024-02-01

Ηικλρι Κιριμότο

#	Article	IF	CITATIONS
1	The effect of prior knowledge of color on reaction time depends on visual modality. Heliyon, 2022, 8, e09469.	3.2	1
2	Can Event-Related Potentials Evoked by Heel Lance Assess Pain Processing in Neonates? A Systematic Review. Children, 2021, 8, 58.	1.5	1
3	Excitability of the Ipsilateral Primary Motor Cortex During Unilateral Goal-Directed Movement. Frontiers in Human Neuroscience, 2021, 15, 617146.	2.0	2
4	Null Effect of Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex on Behavioral Performance in a Go/NoGo Task. Brain Sciences, 2021, 11, 483.	2.3	8
5	Effects of transcranial static magnetic stimulation over the primary motor cortex on local and network spontaneous electroencephalogram oscillations. Scientific Reports, 2021, 11, 8261.	3.3	15
6	Transient Modulation of Working Memory Performance and Event-Related Potentials by Transcranial Static Magnetic Field Stimulation over the Dorsolateral Prefrontal Cortex. Brain Sciences, 2021, 11, 739.	2.3	4
7	The Effect of Prior Knowledge of Color on Behavioral Responses and Event-Related Potentials During Go/No-go Task. Frontiers in Human Neuroscience, 2021, 15, 674964.	2.0	3
8	Midfrontal theta as moderator between beta oscillations and precision control. NeuroImage, 2021, 235, 118022.	4.2	9
9	Event-related potentials evoked by skin puncture reflect activation of Al ² fibers: comparison with intraepidermal and transcutaneous electrical stimulations. PeerJ, 2021, 9, e12250.	2.0	2
10	Influence of Static Magnetic Field Stimulation on the Accuracy of Tachystoscopically Presented Line Bisection. Brain Sciences, 2020, 10, 1006.	2.3	7
11	Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults. NeuroImage, 2020, 220, 117089.	4.2	15
12	The effects of transcranial static magnetic fields stimulation over the supplementary motor area on anticipatory postural adjustments. Neuroscience Letters, 2020, 723, 134863.	2.1	15
13	Evoked Potential as a Pain Evaluation Index for Neonatal Procedural Pain. International Journal of Nursing & Clinical Practices, 2020, 7, .	0.1	2
14	Change-Driven M100 Component in the Bilateral Secondary Somatosensory Cortex: A Magnetoencephalographic Study. Brain Topography, 2019, 32, 435-444.	1.8	2
15	Anodal Transcranial Direct Current Stimulation Over the Supplementary Motor Area Improves Anticipatory Postural Adjustments in Older Adults. Frontiers in Human Neuroscience, 2018, 12, 317.	2.0	12
16	Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation. Neural Plasticity, 2018, 2018, 1-9.	2.2	10
17	Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing. Frontiers in Human Neuroscience, 2018, 12, 63.	2.0	22
18	Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy. Calcified Tissue International, 2017, 100, 420-430.	3.1	9

Hikari Kirimoto

#	Article	IF	CITATIONS
19	Decrease in shortâ€latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement. Brain and Behavior, 2017, 7, e00744.	2.2	11
20	Difference in Cortical Relay Time Between Intrinsic Muscles of Dominant and Nondominant Hands. Journal of Motor Behavior, 2017, 49, 467-475.	0.9	1
21	Bone loss due to disuse and electrical muscle stimulation. The Journal of Physical Fitness and Sports Medicine, 2016, 5, 267-273.	0.3	2
22	Transcranial static magnetic field stimulation - new non-invasive brain stimulation tool. The Journal of Physical Fitness and Sports Medicine, 2016, 5, 205-211.	0.3	4
23	Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex. Frontiers in Human Neuroscience, 2016, 10, 30.	2.0	23
24	Do Differences in Levels, Types, and Duration of Muscle Contraction Have an Effect on the Degree of Post-exercise Depression?. Frontiers in Human Neuroscience, 2016, 10, 159.	2.0	12
25	Inhibitory effect of intensity and interstimulus interval of conditioning stimuli on somatosensory evoked magnetic fields. European Journal of Neuroscience, 2016, 44, 2104-2113.	2.6	8
26	Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields. Brain Topography, 2016, 29, 693-703.	1.8	4
27	Effect of muscle contraction strength on gating of somatosensory magnetic fields. Experimental Brain Research, 2016, 234, 3389-3398.	1.5	11
28	Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices. Scientific Reports, 2016, 6, 34509.	3.3	35
29	Cortical magnetic activation following voluntary movement and several types of somatosensory stimulation. The Journal of Physical Fitness and Sports Medicine, 2016, 5, 275-286.	0.3	0
30	Effects of cathodal transcranial direct current stimulation to primary somatosensory cortex on short-latency afferent inhibition. NeuroReport, 2015, 26, 634-637.	1.2	21
31	Time Course of Change in Movement Structure During Learning of Goal-Directed Movement. Journal of Medical and Biological Engineering, 2015, 35, 113-124.	1.8	1
32	The effect of anodal transcranial direct current stimulation over the primary motor or somatosensory cortices on somatosensory evoked magnetic fields. Clinical Neurophysiology, 2015, 126, 60-67.	1.5	22
33	Motor Cortex-Evoked Activity in Reciprocal Muscles Is Modulated by Reward Probability. PLoS ONE, 2014, 9, e90773.	2.5	19
34	Sensorimotor Modulation Differs with Load Type during Constant Finger Force or Position. PLoS ONE, 2014, 9, e108058.	2.5	14
35	The modulatory effect of electrical stimulation on the excitability of the corticospinal tract varies according to the type of muscle contraction being performed. Frontiers in Human Neuroscience, 2014, 8, 835.	2.0	10
36	No relation between afferent facilitation induced by digital nerve stimulation and the latency of cutaneomuscular reflexes and somatosensory evoked magnetic fields. Frontiers in Human Neuroscience, 2014, 8, 1023.	2.0	12

Hikari Kirimoto

#	Article	IF	CITATIONS
37	Effect of Transcranial Static Magnetic Field Stimulation Over theÂSensorimotor Cortex on Somatosensory Evoked Potentials inÂHumans. Brain Stimulation, 2014, 7, 836-840.	1.6	52
38	Induction of cortical plasticity for reciprocal muscles by paired associative stimulation. Brain and Behavior, 2014, 4, 822-832.	2.2	5
39	Repeated practice of a Go/NoGo visuomotor task induces neuroplastic change in the human posterior parietal cortex: an MEG study. Experimental Brain Research, 2013, 226, 495-502.	1.5	12
40	Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation. BMC Neuroscience, 2013, 14, 43.	1.9	42
41	Activation of the Human Premotor Cortex During Motor Preparation in Visuomotor Tasks. Brain Topography, 2013, 26, 581-590.	1.8	9
42	Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain Research, 2013, 1529, 83-91.	2.2	57
43	Effect of the number of pins and inter-pin distance on somatosensory evoked magnetic fields following mechanical tactile stimulation. Brain Research, 2013, 1535, 78-88.	2.2	19
44	Neuromagnetic activation following active and passive finger movements. Brain and Behavior, 2013, 3, 178-192.	2.2	49
45	The relationship between knee extension strength and lower extremity functions in nursing home residents with dementia. Disability and Rehabilitation, 2012, 34, 202-209.	1.8	22
46	Reciprocal changes in input–output curves of motor evoked potentials while learning motor skills. Brain Research, 2012, 1473, 114-123.	2.2	23
47	Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: An MEG study. Clinical Neurophysiology, 2011, 122, 605-610.	1.5	15
48	Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clinical Neurophysiology, 2011, 122, 777-783.	1.5	47
49	Predicting recovery of Bilateral upper extremity muscle strength after stroke. Journal of Rehabilitation Medicine, 2011, 43, 935-943.	1.1	15
50	Frequent alternate muscle activity of plantar flexor synergists and muscle endurance during low-level static contractions as a function of ankle position. Journal of Physiological Sciences, 2011, 61, 411-419.	2.1	10
51	Response Training Shortens Visuo-Motor Related Time in Athletes. International Journal of Sports Medicine, 2011, 32, 586-590.	1.7	10
52	Neuromagnetic activation of primary and secondary somatosensory cortex following tactile-on and tactile-off stimulation. Clinical Neurophysiology, 2010, 121, 588-593.	1.5	39
53	Magnetic field strength properties in bone marrow during pulsed electromagnetic stimulation. Journal of Biomedical Science and Engineering, 2010, 03, 1156-1160.	0.4	2
54	Transcranial direct current stimulation over premotor cortex modifies the excitability of the ipsilateral primary motor and somatosensory cortices. , 2009, , .		2

#	Article	IF	CITATIONS
55	Reliability and Validity of Measurements of Knee Extension Strength Obtained from Nursing Home Residents with Dementia. American Journal of Physical Medicine and Rehabilitation, 2009, 88, 924-933.	1.4	28
56	ELECTROMYOGRAM PATTERNS DURING SUSTAINED LOW-LEVEL PLANTAR FLEXIONS AND CHANGES IN BLOOD FLOW FOR "ALTERNATE ACTIVITY" AMONG THE TRICEPS SURAE MUSCLES. Japanese Journal of Physical Fitness and Sports Medicine, 2006, 55, 393-402.	0.0	2
57	Response time and muscle activation patterns of the upper limbs during different strikes in kendo. Archives of Budo, 0, 9, 101-106.	0.0	3
58	The Relationship between Knee Extension Strength and Activities of Daily Living in Patients with Dementia. , 0, , 244-256.		0