
Severino F GalÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8984811/publications.pdf Version: 2024-02-01

SEVERINO E CALÃIN

#	Article	IF	CITATIONS
1	Efficient computation for the noisy MAX. International Journal of Intelligent Systems, 2003, 18, 165-177.	5.7	56
2	Comparative evaluation of region query strategies for DBSCAN clustering. Information Sciences, 2019, 502, 76-90.	6.9	42
3	NasoNet, modeling the spread of nasopharyngeal cancer with networks of probabilistic events in discrete time. Artificial Intelligence in Medicine, 2002, 25, 247-264.	6.5	29
4	Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models. Reliability Engineering and System Safety, 2007, 92, 1131-1138.	8.9	28
5	Adaptive generalized crowding for genetic algorithms. Information Sciences, 2014, 258, 140-159.	6.9	23
6	Networks of probabilistic events in discrete time. International Journal of Approximate Reasoning, 2002, 30, 181-202.	3.3	22
7	Generalized crowding for genetic algorithms. , 2010, , .		20
8	A Novel Mating Approach for Genetic Algorithms. Evolutionary Computation, 2013, 21, 197-229.	3.0	19
9	COMPARISON OF TWO TYPES OF EVENT BAYESIAN NETWORKS: A CASE STUDY. Applied Artificial Intelligence, 2007, 21, 185-209.	3.2	13
10	Simple decentralized graph coloring. Computational Optimization and Applications, 2017, 66, 163-185.	1.6	13
11	Constraint Handling Using Tournament Selection: Abductive Inference in Partly Deterministic Bayesian Networks. Evolutionary Computation, 2009, 17, 55-88.	3.0	6
12	Neighborhood beautification: Graph layout through message passing. Journal of Visual Languages and Computing, 2018, 44, 72-88.	1.8	6
13	Fast Evacuation Method: Using an effective dynamic floor field based on efficient pedestrian assignment. Safety Science, 2019, 120, 79-88.	4.9	6
14	Comparative Evaluation of Temporal Nodes Bayesian Networks and Networks of Probabilistic Events in Discrete Time. Lecture Notes in Computer Science, 2004, , 498-507.	1.3	3
15	Comparative Evaluation of the Fast Marching Method and the Fast Evacuation Method for Heterogeneous Media. Applied Artificial Intelligence, 0, , 1-25.	3.2	1
16	Extending cellular evolutionary algorithms with message passing. Soft Computing, 2021, 25, 6271-6282.	3.6	0