Pilar Fernandez-Ibañez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009, 147, 1-59.	2.2	2,574
2	Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 2015, 170-171, 90-123.	10.8	541
3	A critical review on application of photocatalysis for toxicity reduction of real wastewaters. Journal of Cleaner Production, 2020, 258, 120694.	4.6	457
4	Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 2012, 235-236, 29-46.	6.5	421
5	Solar disinfection is an augmentable, in situ -generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Applied Catalysis B: Environmental, 2016, 199, 199-223.	10.8	253
6	Photocatalytic decontamination and disinfection of water with solar collectors. Catalysis Today, 2007, 122, 137-149.	2.2	252
7	Engineering of solar photocatalytic collectors. Solar Energy, 2004, 77, 513-524.	2.9	220
8	Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Research, 2003, 37, 3180-3188.	5.3	217
9	Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Research, 2018, 135, 195-206.	5.3	197
10	A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection. Molecules, 2015, 20, 5574-5615.	1.7	186
11	Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 4-15.	1.1	183
12	Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews, 2009, 13, 1437-1445.	8.2	177
13	Photocatalytic Enhancement for Solar Disinfection of Water: A Review. International Journal of Photoenergy, 2011, 2011, 1-12.	1.4	172
14	Water disinfection by solar photocatalysis using compound parabolic collectors. Catalysis Today, 2005, 101, 345-352.	2.2	166
15	Solar photocatalysis for water disinfection: materials and reactor design. Catalysis Science and Technology, 2014, 4, 1211-1226.	2.1	165
16	Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 2016, 198, 431-446.	10.8	160
17	Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 2016, 42, 15-23.	1.9	152
18	Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chemical Engineering Journal, 2015, 261, 36-44.	6.6	145

#	Article	IF	CITATIONS
19	Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catalysis Today, 2007, 129, 152-160.	2.2	142
20	Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 2006, 64, 272-281.	10.8	130
21	Bactericidal Effect of Solar Water Disinfection under Real Sunlight Conditions. Applied and Environmental Microbiology, 2008, 74, 2997-3001.	1.4	130
22	Solar photo-Fenton treatment—Process parameters and process control. Applied Catalysis B: Environmental, 2006, 64, 121-130.	10.8	128
23	Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Applied Catalysis B: Environmental, 2013, 130-131, 8-13.	10.8	128
24	Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chemical Engineering Journal, 2017, 316, 179-186.	6.6	123
25	Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 43-50.	1.7	122
26	Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Research, 2006, 40, 1086-1094.	5.3	120
27	Disinfection of real and simulated urban wastewater effluents using a mild solar photo-Fenton. Applied Catalysis B: Environmental, 2014, 150-151, 619-629.	10.8	120
28	Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Applied Catalysis B: Environmental, 2007, 74, 152-160.	10.8	118
29	Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study. Applied Catalysis B: Environmental, 2012, 121-122, 20-29.	10.8	115
30	Urban wastewater disinfection for agricultural reuse: effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Applied Catalysis B: Environmental, 2015, 178, 65-73.	10.8	113
31	Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers. Applied Catalysis B: Environmental, 2000, 28, 163-174.	10.8	112
32	Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance. Water Research, 2019, 149, 272-281.	5.3	108
33	Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency. Photochemical and Photobiological Sciences, 2009, 8, 587-595.	1.6	107
34	Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 239-246.	2.0	105
35	Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Research, 2012, 46, 6040-6050.	5.3	101
36	Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 31-40.	2.0	98

#	Article	IF	CITATIONS
37	Solar Advanced Oxidation Processes as disinfection tertiary treatments for real wastewater: Implications for water reclamation. Applied Catalysis B: Environmental, 2013, 136-137, 341-350.	10.8	95
38	Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 2006, 101, 453-463.	1.4	93
39	Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 354-363.	2.0	90
40	Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Applied Catalysis B: Environmental, 2012, 128, 126-134.	10.8	89
41	Intracellular mechanisms of solar water disinfection. Scientific Reports, 2016, 6, 38145.	1.6	84
42	Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. Journal of Photochemistry and Photobiology B: Biology, 2007, 88, 105-111.	1.7	82
43	Photocatalytic disinfection of natural well water contaminated by Fusarium solani using TiO2 slurry in solar CPC photo-reactors. Catalysis Today, 2009, 144, 62-68.	2.2	81
44	Disinfection of urban effluents using solar TiO2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catalysis Today, 2015, 240, 30-38.	2.2	78
45	Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation. Science of the Total Environment, 2014, 468-469, 19-27.	3.9	77
46	Investigating the microbial inactivation efficiency of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. Journal of Chemical Technology and Biotechnology, 2010, 85, 1028-1037.	1.6	76
47	Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light. Journal of Photochemistry and Photobiology B: Biology, 2008, 93, 155-161.	1.7	72
48	Relationship between TiO2 particle size and reactor diameter in solar photoreactors efficiency. Catalysis Today, 1999, 54, 195-204.	2.2	70
49	Supported Fe/C and Fe/Nafion/C catalysts for the photo-Fenton degradation of Orange II under solar irradiation. Catalysis Today, 2005, 101, 375-382.	2.2	70
50	Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H2O2 or S2O82â^' process. Water Research, 2017, 118, 249-260.	5.3	69
51	Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water. Water Research, 2009, 43, 1841-1850.	5.3	68
52	Photoelectrochemical reactors for the solar decontamination of water. Catalysis Today, 1999, 54, 329-339.	2.2	67
53	Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents. Applied Catalysis B: Environmental, 2012, 111-112, 545-554.	10.8	66
54	Mechanistic model of the Escherichia coli inactivation by solar disinfection based on the photo-generation of internal ROS and the photo-inactivation of enzymes: CAT and SOD. Chemical Engineering Journal, 2017, 318, 214-223.	6.6	65

#	Article	IF	CITATIONS
55	Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater. Chemical Engineering Journal, 2020, 388, 124383.	6.6	64
56	Water disinfection using photo-Fenton: Effect of temperature on Enterococcus faecalis survival. Water Research, 2012, 46, 6154-6162.	5.3	63
57	Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy, 2004, 77, 625-633.	2.9	62
58	Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Research, 2014, 63, 316-324.	5.3	57
59	Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H ₂ O ₂ . Environmental Science & Technology, 2015, 49, 11096-11104.	4.6	57
60	Titanium Dioxide/Electrolyte Solution Interface: Electron Transfer Phenomena. Journal of Colloid and Interface Science, 2000, 227, 510-516.	5.0	54
61	Solar disinfection of fungal spores in water aided by low concentrations of hydrogen peroxide. Photochemical and Photobiological Sciences, 2011, 10, 381-388.	1.6	54
62	Mechanistic modeling of UV and mild-heat synergistic effect on solar water disinfection. Chemical Engineering Journal, 2017, 316, 111-120.	6.6	51
63	Validation and application of a multiresidue method based on liquid chromatography-tandem mass spectrometry for evaluating the plant uptake of 74 microcontaminants in crops irrigated with treated municipal wastewater. Journal of Chromatography A, 2018, 1534, 10-21.	1.8	51
64	New large solar photocatalytic plant: set-up and preliminary results. Chemosphere, 2002, 47, 235-240.	4.2	49
65	Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor. Journal of Hazardous Materials, 2011, 196, 16-21.	6.5	49
66	Assessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater. Chemical Engineering Journal, 2014, 257, 122-130.	6.6	49
67	Solar photo-Fenton for water disinfection: An investigation of the competitive role of model organic matter for oxidative species. Applied Catalysis B: Environmental, 2014, 148-149, 484-489.	10.8	49
68	Capability of 19-L polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): Field case studies in India, Bahrain and Spain. Solar Energy, 2015, 116, 1-11.	2.9	49
69	Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant. Chemosphere, 2005, 58, 391-398.	4.2	48
70	Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. Journal of Hazardous Materials, 2019, 372, 85-93.	6.5	48
71	Inactivation of water pathogens with solar photo-activated persulfate oxidation. Chemical Engineering Journal, 2020, 381, 122275.	6.6	47
72	Resistance of <i>Fusarium sp</i> spores to solar TiO ₂ photocatalysis: influence of spore type and water (scalingâ€up results). Journal of Chemical Technology and Biotechnology, 2010, 85, 1038-1048.	1.6	45

#	Article	IF	CITATIONS
73	Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and μM concentrations of H2O2 and Fe2+/3+. Applied Catalysis B: Environmental, 2015, 174-175, 395-402.	10.8	45
74	Assessment of solar photocatalysis using Ag/BiVO 4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents. Catalysis Today, 2017, 281, 124-134.	2.2	44
75	Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches. Analytica Chimica Acta, 2018, 1030, 115-124.	2.6	43
76	Evaluation of solar disinfection of E. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector. Solar Energy, 2014, 100, 195-202.	2.9	40
77	Inactivation of Enterococcus faecalis in simulated wastewater treatment plant effluent by solar photo-Fenton at initial neutral pH. Catalysis Today, 2013, 209, 195-200.	2.2	39
78	Benefits of photo-Fenton at low concentrations for solar disinfection of distilled water. A case study: Phytophthora capsici. Catalysis Today, 2013, 209, 181-187.	2.2	39
79	Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity. Applied Catalysis B: Environmental, 2016, 181, 1-6.	10.8	38
80	Validation of a solar-thermal water disinfection model for Escherichia coli inactivation in pilot scale solar reactors and real conditions. Chemical Engineering Journal, 2018, 331, 831-840.	6.6	37
81	Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Research, 2020, 169, 115281.	5.3	36
82	Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with <i>Cryptosporidium parvum</i> oocysts under real field conditions. Tropical Medicine and International Health, 2009, 14, 620-627.	1.0	35
83	Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. Science of the Total Environment, 2017, 607-608, 1213-1224.	3.9	32
84	A preliminary Ames fluctuation assay assessment of the genotoxicity of drinking water that has been solar disinfected in polyethylene terephthalate (PET) bottles. Journal of Water and Health, 2010, 8, 712-719.	1.1	31
85	Solar photocatalytic disinfection with immobilised TiO2 at pilot-plant scale. Water Science and Technology, 2010, 61, 507-512.	1.2	31
86	Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Applied Catalysis B: Environmental, 2012, 128, 119-125.	10.8	29
87	Organic Microcontaminants in Tomato Crops Irrigated with Reclaimed Water Grown under Field Conditions: Occurrence, Uptake, and Health Risk Assessment. Journal of Agricultural and Food Chemistry, 2019, 67, 6930-6939.	2.4	29
88	Identification of transformation products of carbamazepine in lettuce crops irrigated with Ultraviolet-C treated water. Environmental Pollution, 2019, 247, 1009-1019.	3.7	27
89	Electrochemically assisted photocatalysis for the disinfection of rainwater under solar irradiation. Applied Catalysis B: Environmental, 2021, 281, 119485.	10.8	27
90	Chlorination for low-cost household water disinfection – A critical review and status in three Latin American countries. International Journal of Hygiene and Environmental Health, 2022, 244, 114004.	2.1	27

#	Article	IF	CITATIONS
91	Photocatalytic treatment of dimethoate by solar photocatalysis at pilot plant scale. Environmental Chemistry Letters, 2005, 3, 118-121.	8.3	25
92	Assessment of a pilot solar V-trough reactor for solar water disinfection. Chemical Engineering Journal, 2020, 399, 125719.	6.6	25
93	Drinking water treatment by multistage filtration on a household scale: Efficiency and challenges. Water Research, 2020, 178, 115816.	5.3	25
94	A critical overview of household slow sand filters for water treatment. Water Research, 2022, 208, 117870.	5.3	25
95	A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water (Switzerland), 2021, 13, 1198.	1.2	24
96	Reclamation of Real Urban Wastewater Using Solar Advanced Oxidation Processes: An Assessment of Microbial Pathogens and 74 Organic Microcontaminants Uptake in Lettuce and Radish. Environmental Science & Technology, 2019, 53, 9705-9714.	4.6	23
97	Microbiological Evaluation of 5 L- and 20 L-Transparent Polypropylene Buckets for Solar Water Disinfection (SODIS). Molecules, 2019, 24, 2193.	1.7	23
98	Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment. JPhys Energy, 2021, 3, 012006.	2.3	23
99	Evaluation of the Solar Water Disinfection Process (SODIS) Against Cryptosporidium parvum Using a 25-L Static Solar Reactor Fitted with a Compound Parabolic Collector (CPC). American Journal of Tropical Medicine and Hygiene, 2012, 86, 223-228.	0.6	21
100	Assessing the validity of solar membrane distillation for disinfection of contaminated water. Desalination and Water Treatment, 2015, 55, 2792-2799.	1.0	21
101	Integration of Membrane Distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores. Science of the Total Environment, 2017, 595, 110-118.	3.9	21
102	Solar heterogeneous and homogeneous photocatalysis as a pre-treatment option for biotreatment. Research on Chemical Intermediates, 2007, 33, 407-420.	1.3	20
103	Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs). Acta Tropica, 2012, 124, 235-242.	0.9	20
104	UV solar radiation on a tilted and horizontal plane: Analysis and comparison of 4years of measurements. Solar Energy, 2012, 86, 307-318.	2.9	20
105	Validation of large-volume batch solar reactors for the treatment of rainwater in field trials in sub-Saharan Africa. Science of the Total Environment, 2020, 717, 137223.	3.9	20
106	Electrochemically assisted photocatalysis for the simultaneous degradation of organic micro-contaminants and inactivation of microorganisms in water. Chemical Engineering Research and Design, 2021, 147, 488-496.	2.7	20
107	New trends on photoelectrocatalysis (PEC): nanomaterials, wastewater treatment and hydrogen generation. Current Opinion in Chemical Engineering, 2021, 34, 100725.	3.8	20
108	A Comparative Study of Supported TiO2 as Photocatalyst in Water Decontamination at Solar Pilot Plant Scale. Journal of Solar Energy Engineering, Transactions of the ASME, 2006, 128, 331-337.	1.1	19

#	Article	IF	CITATIONS
109	Photocatalytic inactivation of the waterborne protozoan parasite Cryptosporidium parvum using TiO 2 /H 2 O 2 under simulated and natural solar conditions. Catalysis Today, 2017, 280, 132-138.	2.2	19
110	Photo-Fenton degradation of alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol at solar pilot plant. International Journal of Environment and Pollution, 2006, 27, 135.	0.2	18
111	Treatment of 2,4-Dichlorophenol by Solar Photocatalysis: Comparison of Coupled Photocatalytic-Active Carbon vs. Active Carbon. Journal of Solar Energy Engineering, Transactions of the ASME, 2001, 123, 138-142.	1.1	16
112	Solar photocatalytic inactivation of Fusarium Solani over TiO2 nanomaterials with controlled morphology—Formic acid effect. Catalysis Today, 2013, 209, 147-152.	2.2	16
113	Comparison of different solar reactors for household disinfection of drinking water in developing countries: evaluation of their efficacy in relation to the waterborne enteropathogen Cryptosporidium parvum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 645-652.	0.7	15
114	Legionella jordanis inactivation in water by solar driven processes: EMA-qPCR versus culture-based analyses for new mechanistic insights. Catalysis Today, 2017, 287, 15-21.	2.2	15
115	Solar water disinfection (SODIS): Impact on hepatitis A virus and on a human Norovirus surrogate under natural solar conditions. International Microbiology, 2015, 18, 41-9.	1.1	14
116	Effect of iron salt counter ion in dose–response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes. Physics and Chemistry of the Earth, 2016, 91, 46-52.	1.2	13
117	Household water purification system comprising cartridge filtration, UVC disinfection and chlorination to treat turbid raw water. Journal of Water Process Engineering, 2021, 43, 102203.	2.6	12
118	A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology. Water Science and Technology, 2001, 44, 271-278.	1.2	10
119	UV-A (315–400nm) irradiance from measurements at 380nm for solar water treatment and disinfection: Comparison between model and measurements in Buenos Aires, Argentina and AlmerÃa, Spain. Solar Energy, 2009, 83, 280-286.	2.9	10
120	Meeting daily drinking water needs for communities in Sub-Saharan Africa using solar reactors for harvested rainwater. Chemical Engineering Journal, 2022, 428, 132494.	6.6	9
121	EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems. Science of the Total Environment, 2020, 743, 140717.	3.9	8
122	Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates. Processes, 2018, 6, 137.	1.3	7
123	Conceptualising global water challenges: A transdisciplinary approach for understanding different discourses in sustainable development. Journal of Environmental Management, 2021, 298, 113361.	3.8	7
124	An investigation of photoelectrocatalytic disinfection of water using titania nanotube photoanodes with carbon cathodes and determination of the radicals produced. Applied Catalysis B: Environmental, 2022, 311, 121339.	10.8	7
125	Advanced oxidation processes for environmental protection. Environmental Science and Pollution Research, 2014, 21, 12109-12111.	2.7	6
126	Hepatitis A Virus Disinfection in Water by Solar Photo–Fenton Systems. Food and Environmental Virology, 2018, 10, 159-166.	1.5	6

#	Article	IF	CITATIONS
127	Household slow sand filters in continuous and intermittent flows and their efficiency in microorganism's removal from river water. Environmental Technology (United Kingdom), 2022, 43, 1583-1592.	1.2	6
128	Household slow sand filter efficiency with <i>schmutzdecke</i> evaluation by microsensors. Environmental Technology (United Kingdom), 2022, 43, 4042-4053.	1.2	6
129	Worldwide Research Trends on Solar-Driven Water Disinfection. International Journal of Environmental Research and Public Health, 2021, 18, 9396.	1.2	6
130	UVC inactivation of MS2-phage in drinking water – Modelling and field testing. Water Research, 2021, 203, 117496.	5.3	6
131	Biological Layer in Household Slow Sand Filters: Characterization and Evaluation of the Impact on Systems Efficiency. Water (Switzerland), 2022, 14, 1078.	1.2	6
132	CHAPTER 4. Solar Photocatalysis: Fundamentals, Reactors and Applications. RSC Energy and Environment Series, 2016, , 92-129.	0.2	5
133	Photoelectrocatalytic degradation of pharmaceuticals and inactivation of viruses in water with tungsten oxide electrodes. Journal of Environmental Chemical Engineering, 2022, 10, 107955.	3.3	5
134	Advanced Technologies for Emerging Contaminants Removal in Urban Wastewater. Handbook of Environmental Chemistry, 2014, , 145-169.	0.2	4
135	Homogeneous Fenton and Photo-Fenton Disinfection of Surface and Groundwater. Handbook of Environmental Chemistry, 2018, , 155-177.	0.2	4
136	<i>Podoviridae</i> bacteriophage for the biocontrol of <i>Pseudomonas aeruginosa</i> in rainwater. Environmental Science: Water Research and Technology, 2020, 6, 87-102.	1.2	4
137	Assessment of low-cost cartridge filters for implementation in household drinking water treatment systems. Journal of Water Process Engineering, 2021, 39, 101710.	2.6	4
138	Interfase Óxido/Electrolito: Fenómeno de transferencia de electrones. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 498-502.	0.9	4
139	Technologies for Advanced Wastewater Treatment in the Mediterranean Region. Handbook of Environmental Chemistry, 2010, , 1-28.	0.2	3
140	Solar Photocatalytic Processes: Water Decontamination and Disinfection. , 2013, , 371-393.		3
141	Conventional and New Processes for Urban Wastewater Disinfection: Effect on Emerging and Resistant Microorganisms. Handbook of Environmental Chemistry, 2015, , 107-128.	0.2	3
142	Can solar water-treatment really help in the fight against water shortages?. Europhysics News, 2017, 48, 26-30.	0.1	3
143	Photocatalytic inactivation of microorganisms in water. , 2020, , 229-248.		3
144	Safe drinking water for rural communities using a low-cost household system. Effects of water matrix and field testing. Journal of Water Process Engineering, 2021, 44, 102400.	2.6	3

#	Article	IF	CITATIONS
145	Introduction by guest editors. Catalysis Today, 2005, 101, 185-186.	2.2	2
146	CHAPTER 3. Solar Photocatalytic Disinfection of Water. RSC Energy and Environment Series, 2016, , 72-91.	0.2	2
147	CHAPTER 6. Process Integration. Concepts of Integration and Coupling of Photocatalysis with Other Processes. RSC Energy and Environment Series, 2016, , 157-173.	0.2	2
148	Synthesis Design of TiO2 Nanotubes and Nanowires and Photocatalytic Applications in the Degradation of Organic Pollutants in the Presence or not of Microorganisms. Materials Research Society Symposia Proceedings, 2012, 1442, 13.	0.1	1
149	Environmental applications of solar energy (introduction by guest editors). Solar Energy, 2005, 79, 341-342.	2.9	0
150	Introduction by guest editors. Catalysis Today, 2017, 280, 1.	2.2	0
151	Advanced Oxidation Processes (AOPs) and Quantitative Analysis for Disinfection and Treatment of Water in the Vegetable Industry. , 2018, , 77-111.		0
152	Solar Detoxification and Disinfection of Water. , 2021, , 1-28.		0
153	<i>In vitro</i> toxicity studies of novel solar water disinfection reactors using the E-screen bioassay and the Ames test. H2Open Journal, 0, , .	0.8	0
154	Solar Detoxification and Disinfection of Water. , 2022, , 453-480.		0