
## Marie E Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8984077/publications.pdf Version: 2024-02-01



MADIE E RIIDNS

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. Journal of General Physiology, 2021, 153, .                                                    | 0.9  | 11        |
| 2  | In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium.<br>Scientific Reports, 2021, 11, 16252.                                                                                         | 1.6  | 40        |
| 3  | Tracking distinct microglia subpopulations with photoconvertible Dendra2 in vivo. Journal of Neuroinflammation, 2021, 18, 235.                                                                                                          | 3.1  | 3         |
| 4  | Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annual<br>Review of Vision Science, 2020, 6, 149-169.                                                                                               | 2.3  | 20        |
| 5  | Biological Role of Arrestin-1 Oligomerization. Journal of Neuroscience, 2020, 40, 8055-8069.                                                                                                                                            | 1.7  | 5         |
| 6  | Targeting CD38 with Daratumumab in Refractory Systemic Lupus Erythematosus. New England Journal of Medicine, 2020, 383, 1149-1155.                                                                                                      | 13.9 | 178       |
| 7  | In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice<br>Using Multicolor Confocal Fluorescence Imaging. , 2020, 61, 1.                                                                    |      | 16        |
| 8  | The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice. Scientific Reports, 2020, 10, 7538.                                                                                  | 1.6  | 7         |
| 9  | Harnessing the Sun to See Anew. Neuron, 2019, 102, 1093-1095.                                                                                                                                                                           | 3.8  | 3         |
| 10 | PRCD is essential for high-fidelity photoreceptor disc formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13087-13096.                                                              | 3.3  | 44        |
| 11 | Molecular profiling of resident and infiltrating mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA sequencing. Scientific Reports, 2019, 9, 4858.                                                    | 1.6  | 67        |
| 12 | In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor<br>signaling after injury. Proceedings of the National Academy of Sciences of the United States of<br>America, 2019, 116, 16603-16612. | 3.3  | 46        |
| 13 | Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not<br>Visual Signal Transduction. Journal of Neuroscience, 2019, 39, 9689-9701.                                                              | 1.7  | 38        |
| 14 | Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy in vivo. Biomedical Optics Express, 2019, 10, 151.                                                     | 1.5  | 13        |
| 15 | Loss of cone function without degeneration in a novel Gnat2 knock-out mouse. Experimental Eye<br>Research, 2018, 171, 111-118.                                                                                                          | 1.2  | 30        |
| 16 | RBX2 maintains final retinal cell position in a DAB1-dependent and -independent fashion. Development<br>(Cambridge), 2018, 145, .                                                                                                       | 1.2  | 13        |
| 17 | Report on the National Eye Institute's Audacious Goals Initiative: Creating a Cellular Environment for<br>Neuroregeneration. ENeuro, 2018, 5, ENEURO.0035-18.2018.                                                                      | 0.9  | 9         |
| 18 | Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. Journal of Neuroinflammation, 2018, 15, 344.                                                         | 3.1  | 46        |

MARIE E BURNS

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased<br>light scattering of rod photoreceptors. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, E2937-E2946.                                                        | 3.3 | 106       |
| 20 | Bright flash response recovery of mammalian rods in vivo is rate limited by RCS9. Journal of General<br>Physiology, 2017, 149, 443-454.                                                                                                                                                                        | 0.9 | 12        |
| 21 | Rapid monocyte infiltration following retinal detachment is dependent on non-canonical IL6<br>signaling through gp130. Journal of Neuroinflammation, 2017, 14, 121.                                                                                                                                            | 3.1 | 18        |
| 22 | New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo. Advances in Experimental Medicine and Biology, 2016, 854, 269-275.                                                                                                                                                        | 0.8 | 2         |
| 23 | cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Frontiers in<br>Molecular Neuroscience, 2015, 8, 6.                                                                                                                                                                        | 1.4 | 20        |
| 24 | <i>In vivo</i> wide-field multispectral scanning laser ophthalmoscopy–optical coherence tomography<br>mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and M¼ller glia, and mapping<br>of the mouse retinal and choroidal vasculature. Journal of Biomedical Optics, 2015, 20, 126005. | 1.4 | 64        |
| 25 | Speeding rod recovery improves temporal resolution in the retina. Vision Research, 2015, 110, 57-67.                                                                                                                                                                                                           | 0.7 | 6         |
| 26 | Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomedical Optics Express, 2015, 6, 2191.                                                                                                                            | 1.5 | 53        |
| 27 | Current understanding of signal amplification in phototransduction. Cellular Logistics, 2014, 4, e29390.                                                                                                                                                                                                       | 0.9 | 55        |
| 28 | Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vision Research, 2014, 102, 71-79.                                                                                                                                                                                             | 0.7 | 37        |
| 29 | Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc<br>membranes <i>in vivo</i> . Journal of Physiology, 2014, 592, 2785-2797.                                                                                                                                      | 1.3 | 6         |
| 30 | Absence of Synaptic Regulation by Phosducin in Retinal Slices. PLoS ONE, 2013, 8, e83970.                                                                                                                                                                                                                      | 1.1 | 4         |
| 31 | Calcium Feedback to cGMP Synthesis Strongly Attenuates Single-Photon Responses Driven by Long<br>Rhodopsin Lifetimes. Neuron, 2012, 76, 370-382.                                                                                                                                                               | 3.8 | 55        |
| 32 | Spatiotemporal cGMP Dynamics in Living Mouse Rods. Biophysical Journal, 2012, 102, 1775-1784.                                                                                                                                                                                                                  | 0.2 | 40        |
| 33 | Photoreceptor Signaling: Supporting Vision across a Wide Range of Light Intensities. Journal of<br>Biological Chemistry, 2012, 287, 1620-1626.                                                                                                                                                                 | 1.6 | 176       |
| 34 | Membrane Attachment Is Key to Protecting Transducin GTPase-Activating Complex from Intracellular<br>Proteolysis in Photoreceptors. Journal of Neuroscience, 2011, 31, 14660-14668.                                                                                                                             | 1.7 | 19        |
| 35 | Lack of proteinâ€ŧyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. European Journal of Neuroscience, 2010, 32, 1461-1472.                                                                                                                           | 1.2 | 24        |
| 36 | Deactivation Mechanisms of Rod Phototransduction: The Cogan Lecture. , 2010, 51, 1283.                                                                                                                                                                                                                         |     | 10        |

MARIE E BURNS

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Phosducin Regulates Transmission at thePhotoreceptor-to-ON-Bipolar Cell Synapse. Journal of Neuroscience, 2010, 30, 3239-3253.                                                                    | 1.7 | 42        |
| 38 | Control of Rhodopsin's Active Lifetime by Arrestin-1 Expression in Mammalian Rods. Journal of Neuroscience, 2010, 30, 3450-3457.                                                                  | 1.7 | 71        |
| 39 | Lessons from Photoreceptors: Turning Off G-Protein Signaling in Living Cells. Physiology, 2010, 25, 72-84.                                                                                        | 1.6 | 72        |
| 40 | Enhanced Arrestin Facilitates Recovery and Protects Rods Lacking Rhodopsin Phosphorylation.<br>Current Biology, 2009, 19, 700-705.                                                                | 1.8 | 178       |
| 41 | Enhanced Arrestin Facilitates Recovery and Protects Rods Lacking Rhodopsin Phosphorylation.<br>Current Biology, 2009, 19, 798.                                                                    | 1.8 | 0         |
| 42 | RGS9 Concentration Matters in Rod Phototransduction. Biophysical Journal, 2009, 97, 1538-1547.                                                                                                    | 0.2 | 47        |
| 43 | Functional comparison of RGS9 splice isoforms in a living cell. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20988-20993.                          | 3.3 | 27        |
| 44 | Transducin Î <sup>3</sup> -Subunit Sets Expression Levels of α- and β-Subunits and Is Crucial for Rod Viability. Journal of Neuroscience, 2008, 28, 3510-3520.                                    | 1.7 | 86        |
| 45 | Functional Comparisons of Visual Arrestins in Rod Photoreceptors of Transgenic Mice. , 2007, 48, 1968.                                                                                            |     | 41        |
| 46 | Phosducin Regulates the Expression of Transducin βγ Subunits in Rod Photoreceptors and Does Not<br>Contribute to Phototransduction Adaptation. Journal of General Physiology, 2007, 130, 303-312. | 0.9 | 30        |
| 47 | N-Terminal Fatty Acylation of Transducin Profoundly Influences Its Localization and the Kinetics of Photoresponse in Rods. Journal of Neuroscience, 2007, 27, 10270-10277.                        | 1.7 | 29        |
| 48 | RGS Expression Rate-Limits Recovery of Rod Photoresponses. Neuron, 2006, 51, 409-416.                                                                                                             | 3.8 | 244       |
| 49 | Phototransduction in a Transgenic Mouse Model of Nougaret Night Blindness. Journal of<br>Neuroscience, 2006, 26, 6863-6872.                                                                       | 1.7 | 21        |
| 50 | Deactivation of Phosphorylated and Nonphosphorylated Rhodopsin by Arrestin Splice Variants.<br>Journal of Neuroscience, 2006, 26, 1036-1044.                                                      | 1.7 | 46        |
| 51 | Beyond Counting Photons: Trials and Trends in Vertebrate Visual Transduction. Neuron, 2005, 48, 387-401.                                                                                          | 3.8 | 226       |
| 52 | Absence of the RGS9·Gβ5 GTPase-activating Complex in Photoreceptors of the R9AP Knockout Mouse.<br>Journal of Biological Chemistry, 2004, 279, 1581-1584.                                         | 1.6 | 90        |
| 53 | From Molecules to Behavior. Neuron, 2003, 38, 853-856.                                                                                                                                            | 3.8 | 11        |
| 54 | Novel Form of Adaptation in Mouse Retinal Rods Speeds Recovery of Phototransduction. Journal of<br>General Physiology, 2003, 122, 703-712.                                                        | 0.9 | 52        |

MARIE E BURNS

| #  | Article                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Prolonged Photoresponses and Defective Adaptation in Rods of Gβ5-/- Mice. Journal of Neuroscience, 2003, 23, 6965-6971.                                   | 1.7  | 89        |
| 56 | The DEP Domain Determines Subcellular Targeting of the GTPase Activating Protein RGS9 <i>In Vivo</i> .<br>Journal of Neuroscience, 2003, 23, 10175-10181. | 1.7  | 113       |
| 57 | Dynamics of Cyclic GMP Synthesis in Retinal Rods. Neuron, 2002, 36, 81-91.                                                                                | 3.8  | 207       |
| 58 | Activation, Deactivation, and Adaptation in Vertebrate Photoreceptor Cells. Annual Review of Neuroscience, 2001, 24, 779-805.                             | 5.0  | 371       |
| 59 | Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature, 2000, 403, 557-560.                                  | 13.7 | 452       |
| 60 | Rapid and Reproducible Deactivation of Rhodopsin Requires Multiple Phosphorylation Sites. Neuron, 2000, 28, 153-164.                                      | 3.8  | 243       |
| 61 | Role for the Target Enzyme in Deactivation of Photoreceptor G Protein in Vivo. , 1998, 282, 117-121.                                                      |      | 180       |
| 62 | Synaptic structure and function: Dynamic organization yields architectural precision. Cell, 1995, 83, 187-194.                                            | 13.5 | 149       |