
Stefan Jaeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898403/publications.pdf Version: 2024-02-01

STEEAN LAECED

#	Article	IF	CITATIONS
1	Lung Segmentation in Chest Radiographs Using Anatomical Atlases With Nonrigid Registration. IEEE Transactions on Medical Imaging, 2014, 33, 577-590.	5.4	418
2	Automatic Tuberculosis Screening Using Chest Radiographs. IEEE Transactions on Medical Imaging, 2014, 33, 233-245.	5.4	403
3	Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 2014, 4, 475-7.	1.1	370
4	Image analysis and machine learning for detecting malaria. Translational Research, 2018, 194, 36-55.	2.2	310
5	Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ, 2018, 6, e4568.	0.9	298
6	CNN-based image analysis for malaria diagnosis. , 2016, , .		151
7	Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1427-1438.	3.9	117
8	Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. Journal of Medical Systems, 2018, 42, 146.	2.2	116
9	Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ, 2019, 7, e6977.	0.9	107
10	Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 99-106.	1.7	98
11	Efficient feature extraction and likelihood fusion for vehicle tracking in low frame rate airborne video. , 2010, , .		88
12	Detecting tuberculosis in radiographs using combined lung masks. , 2012, 2012, 4978-81.		73
13	Automatic screening for tuberculosis in chest radiographs: a survey. Quantitative Imaging in Medicine and Surgery, 2013, 3, 89-99.	1.1	68
14	Detecting drug-resistant tuberculosis in chest radiographs. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1915-1925.	1.7	41
15	Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images. Journal of Medical Imaging, 2018, 5, 1.	0.8	40
16	Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radical Biology and Medicine, 2016, 96, 99-115.	1.3	39
17	Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1735-1746.	3.9	38

18 Chest X-ray Image View Classification. , 2015, , .

STEFAN JAEGER

#	Article	IF	CITATIONS
19	Clinical and radiological features of novel coronavirus pneumonia. Journal of X-Ray Science and Technology, 2020, 28, 391-404.	0.7	31
20	Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy. Journal of Medical Imaging, 2018, 5, 1.	0.8	30
21	Malaria Screener: a smartphone application for automated malaria screening. BMC Infectious Diseases, 2020, 20, 825.	1.3	28
22	Atlas-based rib-bone detection in chest X-rays. Computerized Medical Imaging and Graphics, 2016, 51, 32-39.	3.5	24
23	Automatically Detecting Rotation in Chest Radiographs Using Principal Rib-Orientation Measure for Quality Control. International Journal of Pattern Recognition and Artificial Intelligence, 2015, 29, 1557001.	0.7	21
24	Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. Journal of X-Ray Science and Technology, 2020, 28, 939-951.	0.7	20
25	Deep learning-based pulmonary tuberculosis automated detection on chest radiography: large-scale independent testing. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2344-2355.	1.1	18
26	Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections. Journal of X-Ray Science and Technology, 2021, 29, 1-17.	0.7	16
27	Differentiating between drug-sensitive and drug-resistant tuberculosis with machine learning for clinical and radiological features. Quantitative Imaging in Medicine and Surgery, 2022, 12, 675-687.	1.1	15
28	Diagnosing Malaria Patients with Plasmodium falciparum and vivax Using Deep Learning for Thick Smear Images. Diagnostics, 2021, 11, 1994.	1.3	14
29	Classification of cell cycle phases in 3D confocal microscopy using PCNA and chromocenter features. , 2010, , .		12
30	Generalization Challenges in Drug-Resistant Tuberculosis Detection from Chest X-rays. Diagnostics, 2022, 12, 188.	1.3	11
31	Smartphone-Supported Malaria Diagnosis Based on Deep Learning. Lecture Notes in Computer Science, 2019, , 73-80.	1.0	9
32	Parasite Detection in Thick Blood Smears Based on Customized Faster-RCNN on Smartphones. , 2019, , .		8
33	Identifying Drug-Resistant Tuberculosis in Chest Radiographs: Evaluation of CNN Architectures and Training Strategies. , 2021, 2021, 2964-2967.		8
34	Dual Channel Colocalization for Cell Cycle Analysis Using 3D Confocal Microscopy. , 2010, , .		6
35	Annotations of Lung Abnormalities in the Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases. Data, 2022, 7, 95.	1.2	6
36	Detecting and Segmenting White Blood Cells in Microscopy Images of Thin Blood Smears. , 2017, , .		5

Stefan Jaeger

#	Article	IF	CITATIONS
37	The Golden Ratio in Machine Learning. , 2021, , .		3
38	Deep Learning-Based Cell Detection and Extraction in Thin Blood Smears for Malaria Diagnosis. , 2021, ,		3
39	The neurological principle: how traditional Chinese medicine unifies body and mind. International Journal of Functional Informatics and Personalised Medicine, 2013, 4, 84.	0.4	2
40	Detecting Disease in Radiographs with Intuitive Confidence. Scientific World Journal, The, 2015, 2015, 1-9.	0.8	2
41	Longitudinal changes of laboratory measurements after discharged from hospital in 268 COVID-19 pneumonia patients. Journal of X-Ray Science and Technology, 2021, 29, 1-22.	0.7	2
42	Automated Drug-Resistant TB Screening: Importance of Demographic Features and Radiological Findings in Chest X-Ray. , 2021, , .		2
43	Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays. Biomedicines, 2022, 10, 1323.	1.4	2
44	An information-theoretic neural model based on concepts in Chinese medicine. , 2012, , .		1
45	A Cell Augmentation Tool for Blood Smear Analysis. , 2020, , .		1