Mark E J Woolhouse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8983840/publications.pdf

Version: 2024-02-01

218 papers 18,566 citations

19657 61 h-index 127 g-index

227 all docs

227 docs citations

times ranked

227

19548 citing authors

#	Article	IF	CITATIONS
1	Host Range and Emerging and Reemerging Pathogens. Emerging Infectious Diseases, 2005, 11, 1842-1847.	4.3	1,170
2	Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 338-342.	7.1	978
3	Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape. Science, 2001, 294, 813-817.	12.6	765
4	Prediction and prevention of the next pandemic zoonosis. Lancet, The, 2012, 380, 1956-1965.	13.7	744
5	Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics, 2002, 32, 569-577.	21.4	729
6	Population Biology of Multihost Pathogens. Science, 2001, 292, 1109-1112.	12.6	632
7	Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 2019, 10, 1124.	12.8	612
8	Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology and Evolution, 2005, 20, 238-244.	8.7	597
9	Transmission dynamics and epidemiology of BSE in British cattle. Nature, 1996, 382, 779-788.	27.8	565
10	Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 377-380.	1.8	500
11	Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. Lancet, The, 2021, 397, 1646-1657.	13.7	479
12	Antimicrobial resistance in humans, livestock and the wider environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140083.	4.0	461
13	Modelling vaccination strategies against foot-and-mouth disease. Nature, 2003, 421, 136-142.	27.8	375
14	Human viruses: discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2864-2871.	4.0	337
15	Ecological Origins of Novel Human Pathogens. Critical Reviews in Microbiology, 2007, 33, 231-242.	6.1	304
16	Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature Reviews Microbiology, 2008, 6, 904-912.	28.6	300
17	Population biology of emerging and re-emerging pathogens. Trends in Microbiology, 2002, 10, s3-s7.	7.7	266
18	Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 547-552.	7.1	235

#	Article	IF	Citations
19	Achieving global targets for antimicrobial resistance. Science, 2016, 353, 874-875.	12.6	233
20	Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature, 2006, 440, 83-86.	27.8	216
21	Cost of resistance: relationship between reduced fertility and increased resistance in a snail—schistosome host—parasite system. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 391-396.	2.6	161
22	Infectious Diseases: Preparing for the Future. Science, 2006, 313, 1392-1393.	12.6	160
23	The construction and analysis of epidemic trees with reference to the 2001 UK foot–and–mouth outbreak. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 121-127.	2.6	146
24	Acquired immunity and epidemiology of Schistosoma haematobium. Nature, 1991, 351, 757-759.	27.8	144
25	Spatial and temporal heterogeneity in the population dynamics of Bulinus globosus and Biomphalaria pfeifferiand in the epidemiology of their infection with schistosomes. Parasitology, 1989, 98, 21-34.	1.5	137
26	Risk Factors for the Presence of High-Level Shedders of Escherichia coli O157 on Scottish Farms. Journal of Clinical Microbiology, 2007, 45, 1594-1603.	3.9	137
27	Policy: An intergovernmental panel on antimicrobial resistance. Nature, 2014, 509, 555-557.	27.8	130
28	Relationship Between Clinical Signs and Transmission of an Infectious Disease and the Implications for Control. Science, 2011, 332, 726-729.	12.6	129
29	Foot-and-mouth disease under control in the UK. Nature, 2001, 411, 258-259.	27.8	125
30	How to make predictions about future infectious disease risks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2045-2054.	4.0	124
31	Using sewage for surveillance of antimicrobial resistance. Science, 2020, 367, 630-632.	12.6	122
32	Silent spread of H5N1 in vaccinated poultry. Nature, 2006, 442, 757-757.	27.8	121
33	The epidemiology of BSE in cattle herds in Great Britain. II. Model construction and analysis of transmission dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 803-838.	4.0	120
34	Are Food Animals Responsible for Transfer of Antimicrobial-Resistant <i>Escherichia coli</i> or Their Resistance Determinants to Human Populations? A Systematic Review. Foodborne Pathogens and Disease, 2018, 15, 467-474.	1.8	118
35	Chemotherapy Accelerates the Development of Acquired Immune Responses to <i>Schistosoma haematobium</i> Infection. Journal of Infectious Diseases, 1998, 178, 289-293.	4.0	117
36	Sources of Antimicrobial Resistance. Science, 2013, 341, 1460-1461.	12.6	107

#	Article	IF	CITATIONS
37	Temporal trends in the discovery of human viruses. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2111-2115.	2.6	106
38	Trade–offs in the evolution of virulence in an indirectly transmitted macroparasite. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 251-257.	2.6	98
39	Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Tropical Medicine and International Health, 2005, 10, 840-849.	2.3	96
40	Time-Scaled Evolutionary Analysis of the Transmission and Antibiotic Resistance Dynamics of Staphylococcus aureus Clonal Complex 398. Applied and Environmental Microbiology, 2014, 80, 7275-7282.	3.1	91
41	Epidemiological implications of the contact network structure for cattle farms and the 20–80 rule. Biology Letters, 2005, 1, 350-352.	2.3	90
42	Global disease burden due to antibiotic resistance $\hat{a} \in \text{``}$ state of the evidence. Journal of Global Health, 2016, 6, 010306.	2.7	90
43	Human schistosomiasis in the post mass drug administration era. Lancet Infectious Diseases, The, 2017, 17, e42-e48.	9.1	90
44	Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set. PLoS Computational Biology, 2015, 11, e1004613.	3.2	89
45	The role of pre-emptive culling in the control of foot-and-mouth disease. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3239-3248.	2.6	84
46	Lessons from Ebola: Improving infectious disease surveillance to inform outbreak management. Science Translational Medicine, 2015, 7, 307rv5.	12.4	82
47	Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nature Communications, 2021, 12, 6802.	12.8	81
48	Host–parasite population genetics: a cross-sectional comparison of Bulinus globosus and Schistosoma haematobium. Parasitology, 1999, 119, 295-302.	1.5	80
49	Intestinal parasite burden in five troops of olive baboons (<i>Papio cynocephalus anubis</i>) in Gombe Stream National Park, Tanzania. Parasitology, 1996, 112, 489-497.	1.5	78
50	Heterogeneities in water contact patterns and the epidemiology of schistosoma haematobium. Parasitology, 1991, 103, 363-370.	1.5	77
51	Failure of vaccination to prevent outbreaks of foot-and-mouth disease. Epidemiology and Infection, 1996, 116, 363-371.	2.1	76
52	Genome-wide analysis reveals the ancient and recent admixture history of East African Shorthorn Zebu from Western Kenya. Heredity, 2014, 113, 297-305.	2.6	74
53	Epidemiological characteristics of human-infective RNA viruses. Scientific Data, 2018, 5, 180017.	5.3	74
54	Vectorâ€borne diseases and the basic reproduction number: a case study of African horse sickness. Medical and Veterinary Entomology, 1996, 10, 19-28.	1.5	72

#	Article	IF	CITATIONS
55	Sheep Movement Networks and the Transmission of Infectious Diseases. PLoS ONE, 2010, 5, e11185.	2.5	72
56	Assessing the Epidemic Potential of RNA and DNA Viruses. Emerging Infectious Diseases, 2016, 22, 2037-2044.	4.3	72
57	Schistosoma mansoni infection in a natural population of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology, 1997, 115, 621-627.	1.5	70
58	The effects of sampling strategy on the quality of reconstruction of viral population dynamics using Bayesian skyline family coalescent methods: A simulation study. Virus Evolution, 2016, 2, vew003.	4.9	69
59	UN High-Level Meeting on antimicrobials—what do we need?. Lancet, The, 2016, 388, 218-220.	13.7	69
60	Paediatric schistosomiasis: What we know and what we need to know. PLoS Neglected Tropical Diseases, 2018, 12, e0006144.	3.0	69
61	Accuracy of models for the 2001 foot-and-mouth epidemic. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1459-1468.	2.6	68
62	New approaches to quantifying the spread of infection. Nature Reviews Microbiology, 2005, 3, 529-536.	28.6	66
63	Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: an epidemiological study. Lancet Planetary Health, The, 2019, 3, e259-e269.	11.4	64
64	Factors affecting the intensity of reinfection with <i>Schistosoma haematobium</i> following treatment with praziquantel. Parasitology, 1991, 102, 73-83.	1.5	63
65	SELECTION AND STRAIN SPECIFICITY OF COMPATIBILITY BETWEEN SNAIL INTERMEDIATE HOSTS AND THEIR PARASITIC SCHISTOSOMES. Evolution; International Journal of Organic Evolution, 1998, 52, 1627-1634.	2.3	63
66	The epidemiology of BSE in cattle herds in Great Britain. I. Epidemiological processes, demography of cattle and approaches to control by culling. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 781-801.	4.0	62
67	Heterogeneities in schistosome transmission dynamics and control. Parasitology, 1998, 117, 475-482.	1.5	62
68	Epidemiology and control of scrapie within a sheep flock. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1205-1210.	2.6	60
69	Co-infections determine patterns of mortality in a population exposed to parasite infection. Science Advances, 2015, 1, e1400026.	10.3	60
70	Controlling infectious disease through the targeted manipulation of contact network structure. Epidemics, 2015 , 12 , 11 - 19 .	3.0	57
71	INFERENCE FOR INDIVIDUAL-LEVEL MODELS OF INFECTIOUS DISEASES IN LARGE POPULATIONS. Statistica Sinica, 2010, 20, 239-261.	0.3	57
72	Emerging diseases go global. Nature, 2008, 451, 898-899.	27.8	56

#	Article	IF	Citations
73	Managing foot-and-mouth. Nature, 2001, 410, 515-516.	27.8	55
74	Parasite Co-Infections and Their Impact on Survival of Indigenous Cattle. PLoS ONE, 2014, 9, e76324.	2.5	55
75	Modelling the impact of curtailing antibiotic usage in food animals on antibiotic resistance in humans. Royal Society Open Science, 2017, 4, 161067.	2.4	54
76	Footâ€andâ€mouth disease virus infection of sheep: implications for diagnosis and control. Veterinary Record, 2002, 150, 724-727.	0.3	53
77	Epidemiology of trypanosome infections of the tsetse fly Glossina pallidipes in the Zambezi Valley. Parasitology, 1993, 106, 479-485.	1.5	52
78	Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evolution, 2016, 2, vew027.	4.9	52
79	RNA Viruses: A Case Study of the Biology of Emerging Infectious Diseases. Microbiology Spectrum, 2013, 1, .	3.0	51
80	Reconstructing Geographical Movements and Host Species Transitions of Foot-and-Mouth Disease Virus Serotype SAT 2. MBio, 2013, 4, e00591-13.	4.1	50
81	Biased sex ratios and parasite mating probabilities. Parasitology, 1993, 107, 287-295.	1.5	48
82	Acquisition and epidemiology of antibiotic-resistant Escherichia coli in a cohort of newborn calves. Journal of Antimicrobial Chemotherapy, 2004, 53, 867-871.	3.0	47
83	The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases. EcoHealth, 2015, 12, 726-735.	2.0	47
84	Efficient surveillance for healthcare-associated infections spreading between hospitals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2271-2276.	7.1	46
85	Aggregation and distribution of strains in microparasites. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 799-807.	4.0	45
86	Exposure, infection and immune responses to Schistosoma haematobium in young children. Parasitology, 2000, 120, 37-44.	1.5	45
87	Distribution and abundance of trypanosome (subgenus <i>Nannomonas</i>) infections of the tsetse fly <i>Glossina pallidipes</i> in southern Africa. Molecular Ecology, 1996, 5, 11-18.	3.9	43
88	Population Biology of the Freshwater Snail Bulinus globosus in the Zimbabwe Highveld. Journal of Applied Ecology, 1990, 27, 41.	4.0	42
89	Population Biology of the Freshwater Snail Biomphalaria pfeifferi in the Zimbabwe Highveld. Journal of Applied Ecology, 1992, 29, 687.	4.0	41
90	Molecular characterisation of bovine faecal Escherichia coli shows persistence of defined ampicillin resistant strains and the presence of class 1 integrons on an organic beef farm. Veterinary Microbiology, 2006, 115, 250-257.	1.9	41

#	Article	IF	CITATIONS
91	Schistosome Infection Intensity Is Inversely Related to Auto-Reactive Antibody Levels. PLoS ONE, 2011, 6, e19149.	2.5	41
92	The epidemiology of tick-borne haemoparasites as determined by the reverse line blot hybridization assay in an intensively studied cohort of calves in western Kenya. Veterinary Parasitology, 2015, 210, 69-76.	1.8	41
93	Age-Related Decline in Carriage of Ampicillin-Resistant Escherichia coli in Young Calves. Applied and Environmental Microbiology, 2004, 70, 6927-6930.	3.1	40
94	Potential for transmission of infections in networks of cattle farms. Epidemics, 2010, 2, 116-122.	3.0	40
95	The effect of schistosome infection on the mortality rates of <i>Bulinus globosus</i> and <i>Biomphalaria pfeifferi</i> Annals of Tropical Medicine and Parasitology, 1989, 83, 137-141.	1.6	39
96	Neighbourhood control policies and the spread of infectious diseases. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1659-1666.	2.6	39
97	High frequency transfer and horizontal spread of apramycin resistance in calf faecal Escherichia coli. Journal of Antimicrobial Chemotherapy, 2004, 54, 534-537.	3.0	39
98	Protective immunity to <i>Schistosoma haematobium</i> infection is primarily an anti-fecundity response stimulated by the death of adult worms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13347-13352.	7.1	38
99	Relative associations of cattle movements, local spread, and biosecurity with bovine viral diarrhoea virus (BVDV) seropositivity in beef and dairy herds. Preventive Veterinary Medicine, 2013, 112, 285-295.	1.9	38
100	Changes in parasite aggregation with age: a discrete infection model. Parasitology, 1995, 111, 635-644.	1.5	37
101	Topographic determinants of foot and mouth disease transmission in the UK 2001 epidemic. BMC Veterinary Research, 2006, 2, 3.	1.9	37
102	Detection and Characterization of Homologues of Human Hepatitis Viruses and Pegiviruses in Rodents and Bats in Vietnam. Viruses, 2018, 10, 102.	3.3	37
103	First dose ChAdOx1 and BNT162b2 COVID-19 vaccinations and cerebral venous sinus thrombosis: A pooled self-controlled case series study of 11.6 million individuals in England, Scotland, and Wales. PLoS Medicine, 2022, 19, e1003927.	8.4	37
104	Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. International Journal of Antimicrobial Agents, 2019, 54, 531-537.	2.5	36
105	A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. Journal of Global Health, 2019, 9, 010412.	2.7	36
106	Foot-and-mouth disease in the UK: What should we do next time?. Journal of Applied Microbiology, 2003, 94, 126-130.	3.1	34
107	One Health in Action: Operational Aspects of an Integrated Surveillance System for Zoonoses in Western Kenya. Frontiers in Veterinary Science, 2019, 6, 252.	2.2	34
108	Design and descriptive epidemiology of the Infectious Diseases of East African Livestock (IDEAL) project, a longitudinal calf cohort study in western Kenya. BMC Veterinary Research, 2013, 9, 171.	1.9	33

#	Article	IF	CITATIONS
109	Impact of changes in cattle movement regulations on the risks of bovine tuberculosis for Scottish farms. Preventive Veterinary Medicine, 2013, 108, 125-136.	1.9	33
110	The gut microbiome but not the resistome is associated with urogenital schistosomiasis in preschool-aged children. Communications Biology, 2020, 3, 155.	4.4	33
111	Serial passage of foot-and-mouth disease virus in sheep reveals declining levels of viraemia over time. Journal of General Virology, 2002, 83, 1907-1914.	2.9	33
112	Population dynamics of a scrapie outbreak. Archives of Virology, 2001, 146, 1173-1186.	2.1	32
113	Vaccination against Foot-And-Mouth Disease: Do Initial Conditions Affect Its Benefit?. PLoS ONE, 2013, 8, e77616.	2.5	32
114	Molecular Epidemiology of Antimicrobial-Resistant Commensal Escherichia coli Strains in a Cohort of Newborn Calves. Applied and Environmental Microbiology, 2005, 71, 6680-6688.	3.1	31
115	Mortality in East African shorthorn zebu cattle under one year: predictors of infectious-disease mortality. BMC Veterinary Research, 2013, 9, 175.	1.9	31
116	The diversity of human RNA viruses. Future Virology, 2013, 8, 159-171.	1.8	31
117	Diversity of <i>Bartonella </i> spp. in Bats, Southern Vietnam. Emerging Infectious Diseases, 2015, 21, 1266-1267.	4.3	31
118	Not all cows are epidemiologically equal: quantifying the risks of bovine viral diarrhoea virus (BVDV) transmission through cattle movements. Veterinary Research, 2014, 45, 110.	3.0	30
119	Distinct immune responses and virus shedding in pigs following aerosol, intra-nasal and contact infection with pandemic swine influenza A virus, A(H1N1)09. Veterinary Research, 2016, 47, 103.	3.0	30
120	Using genomics data to reconstruct transmission trees during disease outbreaks. OIE Revue Scientifique Et Technique, 2016, 35, 287-296.	1.2	30
121	Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nature Microbiology, 2022, 7, 581-589.	13.3	30
122	Statistical modeling of holding level susceptibility to infection during the 2001 foot and mouth disease epidemic in Great Britain. International Journal of Infectious Diseases, 2010, 14, e210-e215.	3.3	29
123	Identifying and Evaluating Field Indicators of Urogenital Schistosomiasis-Related Morbidity in Preschool-Aged Children. PLoS Neglected Tropical Diseases, 2015, 9, e0003649.	3.0	28
124	Predictors of COVID-19 epidemics in countries of the World Health Organization African Region. Nature Medicine, 2021, 27, 2041-2047.	30.7	27
125	Where Do Emerging Pathogens Come from?. Microbe Magazine, 2006, 1, 511-515.	0.4	27
126	Population dynamics of scrapie in a sheep flock. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 751-756.	4.0	26

#	Article	IF	Citations
127	Chemotherapy-induced, age-related changes in antischistosome antibody responses. Parasite Immunology, 2003, 25, 87-97.	1.5	26
128	Comparing parasitological <i>vs</i> serological determination of <i>Schistosoma haematobium</i> infection prevalence in preschool and primary school-aged children: implications for control programmes. Parasitology, 2014, 141, 1962-1970.	1.5	26
129	Efficacy of praziquantel has been maintained over four decades (from 1977 to 2018): A systematic review and meta-analysis of factors influence its efficacy. PLoS Neglected Tropical Diseases, 2021, 15, e0009189.	3.0	26
130	Secrets of the Hospital Underbelly: Patterns of Abundance of Antimicrobial Resistance Genes in Hospital Wastewater Vary by Specific Antimicrobial and Bacterial Family. Frontiers in Microbiology, 2021, 12, 703560.	3.5	26
131	Mathematical models of transmission dynamics and control of schistosomiasis. American Journal of Tropical Medicine and Hygiene, 1996, 55, 144-148.	1.4	26
132	Population genetics of the schistosome intermediate hostBiomphalaria pfeifferiin the Zimbabwean highveld: implications for co-evolutionary theory. Annals of Tropical Medicine and Parasitology, 2001, 95, 203-214.	1.6	25
133	A genetic interpretation of heightened risk of BSE in offspring of affected dams. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1445-1455.	2.6	24
134	Epidemiology of an intestinal parasite (Spirometra spp.) in two populations of African lions (Panthera) Tj ETQq0	0 0 rgBT /	Overlock 10 T
135	Explaining Observed Infection and Antibody Age-Profiles in Populations with Urogenital Schistosomiasis. PLoS Computational Biology, 2011, 7, e1002237.	3.2	23
136	Genetic susceptibility to infectious disease in East African Shorthorn Zebu: a genome-wide analysis of the effect of heterozygosity and exotic introgression. BMC Evolutionary Biology, 2013, 13, 246.	3.2	23
137	Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure. Journal of Molecular Evolution, 1998, 46, 465-475.	1.8	22
138	Coccidiosis in the European badger (Meles meles) from England, an epidemiological study. Parasitology, 2000, 120, 255-260.	1.5	22
139	Theileria annulata: virulence and transmission from single and mixed clone infections in cattle. Experimental Parasitology, 2002, 100, 186-195.	1.2	21
140	Predicted Impact of Mass Drug Administration on the Development of Protective Immunity against Schistosoma haematobium. PLoS Neglected Tropical Diseases, 2014, 8, e3059.	3.0	21
141	On the interpretation of ageâ€"prevalence curves for schistosome infections of host snails. Parasitology, 1989, 99, 47-56.	1.5	20
142	On estimating the basic reproduction number for Schistosoma haematobium. Tropical Medicine and International Health, 1996, 1, 456-463.	2.3	20
143	Understanding the epidemiology of BSE. Trends in Microbiology, 1997, 5, 421-424.	7.7	20
144	Herd-level risk factors associated with the presence of Phage type 21/28 E. coli O157 on Scottish cattle farms. BMC Microbiology, 2006, 6, 99.	3.3	20

#	Article	IF	Citations
145	Exploiting strain diversity to expose transmission heterogeneities and predict the impact of targeting supershedding. Epidemics, 2009, 1, 221-229.	3.0	20
146	Transmission and distribution of virus serotypes: African horse sickness in zebra. Epidemiology and Infection, 1997, 118, 43-50.	2.1	19
147	Geographic and topographic determinants of local FMD transmission applied to the 2001 UK FMD epidemic. BMC Veterinary Research, 2008, 4, 40.	1.9	19
148	Detection of mortality clusters associated with highly pathogenic avian influenza in poultry: a theoretical analysis. Journal of the Royal Society Interface, 2008, 5, 1409-1419.	3.4	19
149	Deterministic processes structure bacterial genetic communities across an urban landscape. Nature Communications, 2019, 10, 2643.	12.8	19
150	Dose-dependent Responses of Sheep Inoculated Intranasally with a Type O Foot-and-mouth Disease Virus. Journal of Comparative Pathology, 2002, 127, 22-29.	0.4	18
151	Tissue tropism and transmission ecology predict virulence of human RNA viruses. PLoS Biology, 2019, 17, e3000206.	5.6	18
152	A markâ€"recapture method for ecological studies of schistosomiasis vector snail populations. Annals of Tropical Medicine and Parasitology, 1988, 82, 485-497.	1.6	17
153	On the interpretation of age–prevalence curves for trypanosome infections of tsetse flies. Parasitology, 1998, 116, 149-156.	1.5	17
154	Spatio-temporal genetic variability in the schistosome intermediate host Biomphalaria pfeifferi. Annals of Tropical Medicine and Parasitology, 2001, 95, 515-527.	1.6	17
155	A longitudinal assessment of the serological response to <i>Theileria parva</i> and other tick-borne parasites from birth to one year in a cohort of indigenous calves in western Kenya. Parasitology, 2014, 141, 1289-1298.	1.5	17
156	Spread of E. coli O157 infection among Scottish cattle farms: Stochastic models and model selection. Epidemics, 2010, 2, 11-20.	3.0	16
157	Estimating risk factors for farm-level transmission of disease: Foot and mouth disease during the 2001 epidemic in Great Britain. Epidemics, 2010, 2, 109-115.	3.0	16
158	Comparative Assessment of Health Benefits of Praziquantel Treatment of Urogenital Schistosomiasis in Preschool and Primary School-Aged Children. BioMed Research International, 2016, 2016, 1-11.	1.9	16
159	Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control. Scientific Reports, 2016, 6, 38749.	3.3	16
160	Extensive genetic variation revealed in adjacent populations of the schistosome intermediate hostBiomphalaria pfeifferifrom a single river system. Annals of Tropical Medicine and Parasitology, 1998, 92, 693-698.	1.6	15
161	Stochastic simulation and the detection of immunity to schistosome infections. Parasitology, 2000, 120, 161-169.	1.5	15
162	Quantifying Transmission. Microbiology Spectrum, 2017, 5, .	3.0	15

#	Article	IF	Citations
163	Segmentation and shielding of the most vulnerable members of the population as elements of an exit strategy from COVID-19 lockdown. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200275.	4.0	15
164	Genotype-level variation in lifetime breeding success, litter size and survival of sheep in scrapie-affected flocks. Journal of General Virology, 2005, 86, 1229-1238.	2.9	15
165	Contrasting cellular responses in Schistosoma haematobium infected and exposed individuals from areas of high and low transmission in Zimbabwe. Immunology Letters, 2003, 88, 249-256.	2.5	14
166	The predicted impact of immunosuppression upon population age–intensity profiles for schistosomiasis. Parasite Immunology, 2008, 30, 462-470.	1.5	14
167	A Meta-Analysis of Experimental Studies of Attenuated Schistosoma mansoni Vaccines in the Mouse Model. Frontiers in Immunology, 2015, 6, 85.	4.8	14
168	Vaccine-mediated protection of pigs against infection with pandemic H1N1 2009 swine influenza A virus requires a close antigenic match between the vaccine antigen and challenge virus. Vaccine, 2019, 37, 2288-2293.	3.8	14
169	Origin and fate of A/H1N1 influenza in Scotland during 2009. Journal of General Virology, 2012, 93, 1253-1260.	2.9	14
170	Schistosoma haematobium infection is associated with alterations in energy and purine-related metabolism in preschool-aged children. PLoS Neglected Tropical Diseases, 2020, 14, e0008866.	3.0	14
171	Global discovery of human-infective RNA viruses: A modelling analysis. PLoS Pathogens, 2020, 16, e1009079.	4.7	14
172	Temporal patterns in the epidemiology of schistosome infections of snails: a model for field data. Parasitology, 1990, 100, 247-253.	1.5	13
173	Metapopulation dynamics of Escherichia coli O157 in cattle: an exploratory model. Journal of the Royal Society Interface, 2007, 4, 917-924.	3.4	13
174	Efficient national surveillance for health-care-associated infections. BMC Public Health, 2015, 15, 832.	2.9	13
175	Modelling the impact of co-circulating low pathogenic avian influenza viruses on epidemics of highly pathogenic avian influenza in poultry. Epidemics, 2016, 17, 27-34.	3.0	13
176	Timelines of infection and transmission dynamics of H1N1pdm09 in swine. PLoS Pathogens, 2020, 16, e1008628.	4.7	13
177	<i>Escherichia coli</i> O157 infection on Scottish cattle farms: dynamics and control. Journal of the Royal Society Interface, 2011, 8, 1051-1058.	3.4	12
178	A further model for temporal patterns in the epidemiology of schistosome infections of snails. Parasitology, 1992, 104, 443-449.	1.5	11
179	Evaluating different PrP genotype selection strategies for expected severity of scrapie outbreaks and genetic progress in performance in commercial sheep. Preventive Veterinary Medicine, 2009, 91, 161-171.	1.9	11
180	Sero-Prevalence and Incidence of A/H1N1 2009 Influenza Infection in Scotland in Winter 2009–2010. PLoS ONE, 2011, 6, e20358.	2.5	11

#	Article	IF	Citations
181	Vulnerability of the British swine industry to classical swine fever. Scientific Reports, 2017, 7, 42992.	3.3	11
182	A theoretical framework for the immunoepidemiology of blocking antibodies to helminth infection. Parasite Immunology, 1994, 16, 415-424.	1.5	10
183	The baseline characteristics and interim analyses of the high-risk sentinel cohort of the Vietnam Initiative on Zoonotic InfectiONS (VIZIONS). Scientific Reports, 2015, 5, 17965.	3.3	10
184	Using national movement databases to help inform responses to swine disease outbreaks in Scotland: the impact of uncertainty around incursion time. Scientific Reports, 2016, 6, 20258.	3.3	10
185	Population level changes in schistosomeâ€specific antibody levels following chemotherapy. Parasite Immunology, 2019, 41, e12604.	1.5	9
186	What are SARS-CoV-2 genomes from the WHO Africa region member states telling us?. BMJ Global Health, 2021, 6, e004408.	4.7	9
187	Vaccines That Reduce Viral Shedding Do Not Prevent Transmission of H1N1 Pandemic 2009 Swine Influenza A Virus Infection to Unvaccinated Pigs. Journal of Virology, 2021, 95, .	3.4	8
188	Survival rates of Bulinus globosus during aestivation. Annals of Tropical Medicine and Parasitology, 1990, 84, 293-294.	1.6	7
189	Spatio-temporal genetic variability in the schistosome intermediate host Biomphalaria pfeifferi. Annals of Tropical Medicine and Parasitology, 2001, 95, 515-527.	1.6	7
190	Emergence of new infectious diseases. , 2007, , 215-228.		7
191	Suboptimal Herd Performance Amplifies the Spread of Infectious Disease in the Cattle Industry. PLoS ONE, 2014, 9, e93410.	2.5	7
192	Dangers of moving cows. Nature, 2005, 435, 431-432.	27.8	6
193	Vaccination strategies for foot-and-mouth disease (reply). Nature, 2007, 445, E12-E13.	27.8	6
194	Risk factors for carbapenemase-producing organisms among inpatients in Scotland: A national matched caseâ€"control study. Infection Control and Hospital Epidemiology, 2021, 42, 968-977.	1.8	5
195	Society should decide on UK badger cull. Nature, 2013, 498, 434-434.	27.8	4
196	RNA Viruses: A Case Study of the Biology of Emerging Infectious Diseases. , 0, , 81-97.		4
197	Impact on emergency and elective hospital-based care in Scotland over the first 12 months of the pandemic: interrupted time-series analysis of national lockdowns. Journal of the Royal Society of Medicine, 2022, 115, 429-438.	2.0	4
198	Zero infection. Science, 2014, 346, 1271-1271.	12.6	3

#	Article	IF	CITATIONS
199	Variation and covariation in strongyle infection in East African shorthorn zebu calves. Parasitology, 2015, 142, 499-511.	1.5	3
200	Sources of human viruses. Science, 2018, 362, 524-525.	12.6	3
201	Quantifying Transmission., 0,, 279-289.		3
202	Investigating a strategy for quantifying schistosome infection levels in preschool-aged children using prevalence data from school-aged children. PLoS Neglected Tropical Diseases, 2020, 14, e0008650.	3.0	3
203	Reflections on IDEAL: What we have learnt from a unique calf cohort study. Preventive Veterinary Medicine, 2020, 181, 105062.	1.9	3
204	Mathematical Models of the Epidemiology and Control of Foot-and-Mouth Disease., 2004,, 356-381.		3
205	Ecological and taxonomic variation among human RNA viruses. Journal of Clinical Virology, 2013, 58, 344-345.	3.1	2
206	Sample descriptors linked to metagenomic sequencing data from human and animal enteric samples from Vietnam. Scientific Data, 2019, 6, 202.	5.3	2
207	IDEAL, the Infectious Diseases of East African Livestock project open access database and biobank. Scientific Data, 2020, 7, 224.	5.3	2
208	No Exchange of Picornaviruses in Vietnam between Humans and Animals in a High-Risk Cohort with Close Contact despite High Prevalence and Diversity. Viruses, 2021, 13, 1709.	3.3	2
209	Fungal allergic sensitisation in young rural Zimbabwean children: Gut mycobiome and seroreactivity characteristics. Current Research in Microbial Sciences, 2021, 2, 100082.	2.3	2
210	Pig Exposure and Health Outcomes in Hospitalized Infectious Disease Patients in Vietnam. EcoHealth, 2020, 17, 28-40.	2.0	1
211	Communicable Disease Epidemiology & Control. R. Webber. Pp. 368. Wallingford, Oxon, UK: CAB International, 1996. £19.95 (US \$37.50). ISBN 0 085199 138 6 Epidemiology and Infection, 1997, 118, 197-19)8 ^{2.1}	O
212	Statistical modelling of data showing pandemic H1N1 2009 swine influenza A virus infection kinetics in vaccinated pigs. Data in Brief, 2019, 27, 104576.	1.0	0
213	Real-time monitoring of COVID-19 in Scotland. Journal of the Royal College of Physicians of Edinburgh, The, 2021, 51, S20-S25.	0.6	0
214	Global discovery of human-infective RNA viruses: A modelling analysis., 2020, 16, e1009079.		0
215	Global discovery of human-infective RNA viruses: A modelling analysis. , 2020, 16, e1009079.		O
216	Global discovery of human-infective RNA viruses: A modelling analysis., 2020, 16, e1009079.		0

#	Article	lF	CITATIONS
217	Global discovery of human-infective RNA viruses: A modelling analysis. , 2020, 16, e1009079.		О
218	The case against lockdown as a public health intervention. Journal of the Royal College of Physicians of Edinburgh, The, 2022, 52, 12-13.	0.6	0