Lei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8983797/publications.pdf

Version: 2024-02-01

393982 395343 1,129 32 19 33 citations h-index g-index papers 33 33 33 1817 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Catalysis Today, 2020, 355, 286-294.	2.2	37
2	The construction of a 2D MoS2-based binder-free electrode with a honeycomb structure for enhanced electrochemical performance. Dalton Transactions, 2020, 49, 8036-8040.	1.6	3
3	Enhanced NO ₂ Sensitivity in Schottky-Contacted n-Type SnS ₂ Gas Sensors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26746-26754.	4.0	49
4	Photo-enhanced gas sensing of SnS ₂ with nanoscale defects. RSC Advances, 2019, 9, 626-635.	1.7	43
5	Strategy for Fabricating Wafer-Scale Platinum Disulfide. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8202-8209.	4.0	37
6	Enhanced NO ₂ Sensing at Room Temperature with Graphene via Monodisperse Polystyrene Bead Decoration. ACS Omega, 2019, 4, 3812-3819.	1.6	33
7	Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catalysis Today, 2019, 330, 240-245.	2.2	53
8	Dimensional construction and morphological tuning of heterogeneous MoS ₂ /NiS electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9833-9838.	5.2	114
9	Bubble-supported engineering of hierarchical CuCo ₂ 5 ₄ hollow spheres for enhanced electrochemical performance. Journal of Materials Chemistry A, 2018, 6, 5265-5270.	5.2	103
10	Cross-linked Ni(OH) ₂ /CuCo ₂ S ₄ /Ni networks as binder-free electrodes for high performance supercapatteries. Nanoscale, 2018, 10, 20526-20532.	2.8	41
11	Hollow spherical LaNiO 3 supercapacitor electrode synthesized by a facile template-free method. Materials Letters, 2017, 201, 122-124.	1.3	54
12	H2S + SO2 produces water-dispersed sulfur nanoparticles for lithium-sulfur batteries. Nano Energy, 2017, 41, 665-673.	8.2	12
13	Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Metals, 2017, 36, 425-433.	3.6	15
14	Polyvinylpyrrolidone-assisted Solvothermal Synthesis of Porous LaCoO3 Nanospheres as Supercapacitor Electrode. International Journal of Electrochemical Science, 2017, 12, 7121-7127.	0.5	21
15	Spatially Interlinked Graphene with Uniformly Loaded Sulfur for High Performance Liâ€6 Batteries. Chinese Journal of Chemistry, 2016, 34, 41-45.	2.6	11
16	Covalent modification of graphite oxide with acetic anhydride to enhance dispersibility in organic solvents. Functional Materials Letters, 2016, 09, 1650044.	0.7	1
17	A highly efficient electrocatalyst of perovskite LaNiO3 for nonaqueous Li–O2 batteries with superior cycle stability. Journal of Alloys and Compounds, 2016, 664, 750-755.	2.8	28
18	Pr ₆ O ₁₁ -Coated High Capacity Layered Li[Li _{0.17} Ni _{0.17} 2as a Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1564-A1571.	1.3	13

#	Article	IF	CITATIONS
19	An intermediate temperature fuel cell based on composite electrolyte of carbonate and doped barium cerate with SrFe0.7Mn0.2Mo0.1O3â~δ cathode. International Journal of Hydrogen Energy, 2013, 38, 16546-16551.	3.8	13
20	Electro-Responsive Polystyrene Shape Memory Polymer Nanocomposites. Nanoscience and Nanotechnology Letters, 2012, 4, 814-820.	0.4	26
21	Conductivity and stability of cobalt pyrovanadate. Journal of Alloys and Compounds, 2011, 509, 4117-4121.	2.8	11
22	Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode. Solid State Ionics, 2011, 201, 94-100.	1.3	89
23	Fabrication of solid oxide fuel cell based on doped ceria electrolyte by one-step sintering at 800°C. Solid State Ionics, 2011, 203, 47-51.	1.3	18
24	Study on conductivity and redox stability of iron orthovanadate. Materials Chemistry and Physics, 2011, 126, 614-618.	2.0	17
25	An intermediate temperature solid oxide fuel cell fabricated by one step co-press-sintering. International Journal of Hydrogen Energy, 2011, 36, 14643-14647.	3.8	18
26	A stable intermediate temperature fuel cell based on doped-ceria–carbonate composite electrolyte and perovskite cathode. Electrochemistry Communications, 2011, 13, 582-585.	2.3	45
27	Durability study of an intermediate temperature fuel cell based on an oxide–carbonate composite electrolyte. International Journal of Hydrogen Energy, 2010, 35, 6934-6940.	3.8	46
28	Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode. Electrochemistry Communications, 2010, 12, 1589-1592.	2.3	27
29	A high performance intermediate temperature fuel cell based on a thick oxide–carbonate electrolyte. Journal of Power Sources, 2009, 194, 967-971.	4.0	47
30	Stability and conductivity study of NH4PO3–PTFE composites at intermediate temperatures. Journal of Alloys and Compounds, 2009, 480, 874-877.	2.8	9
31	Ferroelectric Aging and Recoverable Electrostrain in BaTi _{0.98} Ceramics. Journal of the American Ceramic Society, 2008, 91, 3101-3104.	1.9	10
32	Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Applied Physics Letters, 2007, 90, 142914.	1.5	81