
Peng Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8983342/publications.pdf Version: 2024-02-01

DENC FE

#	Article	IF	CITATIONS
1	Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nature Methods, 2021, 18, 551-556.	9.0	124
2	4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. Journal of Clinical Investigation, 2016, 126, 1679-1690.	3.9	100
3	High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network. Biomedical Optics Express, 2019, 10, 1044.	1.5	92
4	Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function. Scientific Reports, 2016, 6, 22489.	1.6	64
5	Discretely tunable optofluidic compound microlenses. Lab on A Chip, 2011, 11, 2835.	3.1	55
6	Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation. JCI Insight, 2018, 3, .	2.3	46
7	Droplet-based light-sheet fluorescence microscopy for high-throughput sample preparation, 3-D imaging and quantitative analysis on a chip. Lab on A Chip, 2017, 17, 2193-2197.	3.1	44
8	A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides. Lab on A Chip, 2012, 12, 3700.	3.1	43
9	lsotropic super-resolution light-sheet microscopy of dynamic intracellular structures at subsecond timescales. Nature Methods, 2022, 19, 359-369.	9.0	43
10	Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports, 2017, 7, 42209.	1.6	41
11	Automated Segmentation of Light-Sheet Fluorescent Imaging to Characterize Experimental Doxorubicin-Induced Cardiac Injury and Repair. Scientific Reports, 2017, 7, 8603.	1.6	39
12	Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens. Advanced Photonics, 2019, 1, 1.	6.2	37
13	Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope. Biomedical Optics Express, 2016, 7, 194.	1.5	36
14	Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight, 2018, 3, .	2.3	36
15	Hemodynamics and Ventricular Function in a Zebrafish Model of Injury and Repair. Zebrafish, 2014, 11, 447-454.	0.5	31
16	Three-dimensional, isotropic imaging of mouse brain using multi-view deconvolution light sheet microscopy. Journal of Innovative Optical Health Sciences, 2017, 10, 1743006.	0.5	31
17	Three-dimensional digital PCR through light-sheet imaging of optically cleared emulsion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25628-25633.	3.3	28
18	Minutes-timescale 3D isotropic imaging of entire organs at subcellular resolution by content-aware compressed-sensing light-sheet microscopy. Nature Communications, 2021, 12, 107.	5.8	27

Peng Fei

#	Article	IF	CITATIONS
19	Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics. JCI Insight, 2017, 2, .	2.3	24
20	Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens. Optics Express, 2020, 28, 30234.	1.7	24
21	Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. Progress in Biophysics and Molecular Biology, 2018, 138, 105-115.	1.4	22
22	Fast, 3D Isotropic Imaging of Whole Mouse Brain Using Multiangleâ€Resolved Subvoxel SPIM. Advanced Science, 2020, 7, 1901891.	5.6	22
23	Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens. Biomedical Optics Express, 2020, 11, 7273.	1.5	19
24	Exceeding the limits of 3D fluorescence microscopy using a dual-stage-processing network. Optica, 2020, 7, 1627.	4.8	19
25	<scp>Visibleâ€</scp> near infrared <scp>â€I</scp> skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation. Journal of Biophotonics, 2020, 13, e202000142.	1.1	17
26	Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain. ELife, 2021, 10, .	2.8	17
27	Controllable growth of two-dimensional perovskite microstructures. CrystEngComm, 2018, 20, 6538-6545.	1.3	14
28	A hybrid of light-field and light-sheet imaging to study myocardial function and intracardiac blood flow during zebrafish development. PLoS Computational Biology, 2021, 17, e1009175.	1.5	14
29	Three dimensional tubular structure self-assembled by vascular mesenchymal cells at stiffness interfaces of hydrogels. Biomedicine and Pharmacotherapy, 2016, 83, 1203-1211.	2.5	13
30	Light-sheet Fluorescence Microscopy for the Study of the Murine Heart. Journal of Visualized Experiments, 2018, , .	0.2	12
31	Efficient superâ€resolution volumetric imaging by radial fluctuation Bayesian analysis lightâ€sheet microscopy. Journal of Biophotonics, 2020, 13, e201960242.	1.1	10
32	High-speed large-scale 4D activities mapping of moving C. elegans by deep-learning-enabled light-field microscopy on a chip. Sensors and Actuators B: Chemical, 2021, 348, 130638.	4.0	10
33	Efficient and costâ€effective 3D cellular imaging by subâ€voxelâ€resolving lightâ€sheet addâ€on microscopy. Journal of Biophotonics, 2020, 13, e201960243.	1.1	9
34	Deep-learning on-chip light-sheet microscopy enabling video-rate volumetric imaging of dynamic biological specimens. Lab on A Chip, 2021, 21, 3420-3428.	3.1	8
35	Automatic Segmentation and Cardiac Mechanics Analysis of Evolving Zebrafish Using Deep Learning. Frontiers in Cardiovascular Medicine, 2021, 8, 675291.	1.1	8
36	Super-resolution generative adversarial network (SRGAN) enabled on-chip contact microscopy. Journal Physics D: Applied Physics, 2021, 54, 394005.	1.3	6

Peng Fei

#	Article	IF	CITATIONS
37	Axial resolution improvement of two-photon microscopy by multi-frame reconstruction and adaptive optics. Biomedical Optics Express, 2020, 11, 6634.	1.5	6
38	Rotational scan digital LAMP for accurate quantitation of nucleic acids. Lab on A Chip, 2021, 21, 2265-2271.	3.1	5
39	Large-scale and contact-free fabrication of microwell arrays based on electro-pressure of depositing ions. AIP Advances, 2019, 9, 045317.	0.6	Ο
40	lsotropic super-resolution imaging of thick samples with multi-view sub-voxel-resolved light-sheet microscopy. , 2018, , .		0
41	Deep-learning Fluorescence Microscopy for Capturing Biological Dynamics at High Spatiotemporal Resolution. , 2021, , .		0
42	Open-top light-sheet imaging of CLEAR emulsion for high-throughput loss-free analysis of massive fluorescent droplets. Biomedical Physics and Engineering Express, 0, , .	0.6	0