## Javier GonzÃ;lez-SabÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8983199/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Construction of chemoenzymatic cascade reactions for bridging chemocatalysis and Biocatalysis:<br>Principles, strategies and prospective. Chemical Engineering Journal, 2021, 420, 127659.                                            | 6.6 | 61        |
| 2  | Expanding the Toolbox of R â€Selective Amine Transaminases by Identification and Characterization of New Members. ChemBioChem, 2021, 22, 1232-1242.                                                                                   | 1.3 | 14        |
| 3  | Enzymatic Cascade Reactions in Non-Conventional Media. , 2021, , 165-178.                                                                                                                                                             |     | 0         |
| 4  | Novel chiral naphthalimide-cycloalkanediamine conjugates: Design, synthesis and antitumor activity.<br>Bioorganic Chemistry, 2021, 112, 104859.                                                                                       | 2.0 | 5         |
| 5  | Chemoenzymatic Oxosulfonylationâ€Bioreduction Sequence for the Stereoselective Synthesis of<br>βâ€Hydroxy Sulfones. ChemSusChem, 2021, , .                                                                                            | 3.6 | 7         |
| 6  | Copper-catalyzed Goldberg-type C–N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Organic and Biomolecular Chemistry, 2021, 19, 1773-1779.                                                             | 1.5 | 30        |
| 7  | A one-pot two-step synthesis of tertiary alcohols combining the biocatalytic laccase/TEMPO oxidation system with organolithium reagents in aerobic aqueous media at room temperature. Chemical Communications, 2021, 57, 13534-13537. | 2.2 | 9         |
| 8  | Non onventional Media as Strategy to Overcome the Solvent Dilemma in Chemoenzymatic Tandem<br>Catalysis. ChemCatChem, 2020, 12, 1903-1912.                                                                                            | 1.8 | 47        |
| 9  | Chemoenzymatic Synthesis of Sertraline. European Journal of Organic Chemistry, 2020, 2020, 510-513.                                                                                                                                   | 1.2 | 11        |
| 10 | Deep eutectic solvent-catalyzed Meyer–Schuster rearrangement of propargylic alcohols under mild and bench reaction conditions. Chemical Communications, 2020, 56, 15165-15168.                                                        | 2.2 | 14        |
| 11 | DESign of Sustainable One-Pot Chemoenzymatic Organic Transformations in Deep Eutectic Solvents for the Synthesis of 1,2-Disubstituted Aromatic Olefins. Frontiers in Chemistry, 2020, 8, 139.                                         | 1.8 | 23        |
| 12 | Combination of organocatalytic oxidation of alcohols and organolithium chemistry (RLi) in aqueous<br>media, at room temperature and under aerobic conditions. Chemical Communications, 2020, 56,<br>8932-8935.                        | 2.2 | 17        |
| 13 | Addition of Highly Polarized Organometallic Compounds to <i>Nâ€ŧert</i> â€Butanesulfinyl Imines in Deep<br>Eutectic Solvents under Air: Preparation of Chiral Amines of Pharmaceutical Interest. ChemSusChem,<br>2020, 13, 3583-3588. | 3.6 | 35        |
| 14 | Using Deep Eutectic Solvents to Overcome Limited Substrate Solubility in the Enzymatic<br>Decarboxylation of Bio-Based Phenolic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>16364-16370.                            | 3.2 | 44        |
| 15 | Oneâ€pot Synthesis of 4â€Aminocyclohexanol Isomers by Combining a Keto Reductase and an Amine<br>Transaminase. ChemCatChem, 2019, 11, 5794-5799.                                                                                      | 1.8 | 7         |
| 16 | Enantioselective One-Pot Synthesis of Biaryl-Substituted Amines by Combining Palladium and Enzyme<br>Catalysis in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 5486-5493.                              | 3.2 | 51        |
| 17 | Amine Transaminase from <i>Exophiala Xenobiotica</i> —Crystal Structure and Engineering of a Fold IV<br>Transaminase that Naturally Converts Biaryl Ketones. ACS Catalysis, 2019, 9, 1140-1148.                                       | 5.5 | 34        |
| 18 | Oneâ€Pot Transformation of Ketoximes into Optically Active Alcohols and Amines by Sequential Action of Laccases and Ketoreductases or ωâ€Transaminases. ChemCatChem, 2019, 11, 1272-1277.                                             | 1.8 | 20        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Straightforward Deracemization of <i>sec</i> â€Alcohols Combining Organocatalytic Oxidation and<br>Biocatalytic Reduction. European Journal of Organic Chemistry, 2018, 2018, 3031-3035.                                                  | 1.2 | 30        |
| 20 | Chemoenzymatic Approaches to the Synthesis of the Calcimimetic Agent Cinacalcet Employing<br>Transaminases and Ketoreductases. Advanced Synthesis and Catalysis, 2018, 360, 2157-2165.                                                      | 2.1 | 23        |
| 21 | Strengthening the Combination between Enzymes and Metals in Aqueous Medium: Concurrent<br>Ruthenium atalyzed Nitrile Hydration ―Asymmetric Ketone Bioreduction. ChemCatChem, 2018, 10,<br>4676-4682.                                        | 1.8 | 31        |
| 22 | Front Cover Picture: Chemoenzymatic Approaches to the Synthesis of the Calcimimetic Agent<br>Cinacalcet Employing Transaminases and Ketoreductases (Adv. Synth. Catal. 11/2018). Advanced<br>Synthesis and Catalysis, 2018, 360, 2061-2061. | 2.1 | 0         |
| 23 | New Insights into the Biosynthesis Pathway of Polyketide Alkaloid Argimycins P in Streptomyces argillaceus. Frontiers in Microbiology, 2018, 9, 252.                                                                                        | 1.5 | 23        |
| 24 | One-Pot Combination of Metal- and Bio-Catalysis in Water for the Synthesis of Chiral Molecules.<br>Catalysts, 2018, 8, 75.                                                                                                                  | 1.6 | 49        |
| 25 | Novel Insights into the Combination of Metal―and Biocatalysis: Cascade Oneâ€Pot Synthesis of<br>Enantiomerically Pure Biaryl Alcohols in Deep Eutectic Solvents. ChemCatChem, 2018, 10, 4417-4423.                                          | 1.8 | 44        |
| 26 | Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in <i>Deep<br/>Eutectic Solvents</i> as biorenewable reaction media. Green Chemistry, 2018, 20, 3468-3475.                                           | 4.6 | 96        |
| 27 | Exploiting the Biocatalytic Toolbox for the Asymmetric Synthesis of the Heartâ€Rate Reducing Agent<br>Ivabradine. Advanced Synthesis and Catalysis, 2017, 359, 485-493.                                                                     | 2.1 | 30        |
| 28 | Hybrid Organo- and Biocatalytic Process for the Asymmetric Transformation of Alcohols into Amines in Aqueous Medium. ACS Catalysis, 2017, 7, 4768-4774.                                                                                     | 5.5 | 42        |
| 29 | Combination of Metal-Catalyzed Cycloisomerizations and Biocatalysis in Aqueous Media: Asymmetric<br>Construction of Chiral Alcohols, Lactones, and γ-Hydroxy-Carbonyl Compounds. ACS Catalysis, 2017, 7,<br>7753-7759.                      | 5.5 | 41        |
| 30 | Asymmetric Reduction of Prochiral Ketones by Using Selfâ€6ufficient Heterogeneous Biocatalysts Based<br>on NADPHâ€Dependent Ketoreductases. Chemistry - A European Journal, 2017, 23, 16843-16852.                                          | 1.7 | 61        |
| 31 | Editorial: Applied Microbiology for Chemical Syntheses. Frontiers in Microbiology, 2017, 8, 1931.                                                                                                                                           | 1.5 | 1         |
| 32 | From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium atalyzed Allylic Alcohol<br>Isomerization and Asymmetric Bioreduction. Angewandte Chemie, 2016, 128, 8833-8837.                                                     | 1.6 | 13        |
| 33 | From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium atalyzed Allylic Alcohol<br>Isomerization and Asymmetric Bioreduction. Angewandte Chemie - International Edition, 2016, 55,<br>8691-8695.                           | 7.2 | 54        |
| 34 | Identification of Mithramycin Analogues with Improved Targeting of the EWS-FLI1 Transcription Factor. Clinical Cancer Research, 2016, 22, 4105-4118.                                                                                        | 3.2 | 56        |
| 35 | Developing a Biocascade Process: Concurrent Ketone Reduction-Nitrile Hydrolysis of 2-Oxocycloalkanecarbonitriles. Organic Letters, 2016, 18, 3366-3369.                                                                                     | 2.4 | 18        |
| 36 | Laccase-catalysed biotransformation of collismycin derivatives. A novel enzymatic approach for the cleavage of oximes. Green Chemistry, 2016, 18, 989-994.                                                                                  | 4.6 | 16        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Expanding the Chemical Diversity of the Antitumoral Compound Mithramycin by Combinatorial<br>Biosynthesis and Biocatalysis: The Quest for Mithralogs with Improved Therapeutic Window. Planta<br>Medica, 2015, 81, 1326-1338. | 0.7  | 30        |
| 38 | Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic<br>alcohol isomerisation–asymmetric bioamination. Chemical Communications, 2015, 51, 10937-10940.                               | 2.2  | 46        |
| 39 | Abstract 1612: Identification of mithramycin analogs with improved targeting of the EWS/FLI1 transcription factor. , 2015, , .                                                                                                |      | 1         |
| 40 | Generation by mutasynthesis of potential neuroprotectant derivatives of the bipyridyl collismycin A.<br>Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5707-5709.                                                      | 1.0  | 8         |
| 41 | Enzymatic transesterification of pharmacologically interesting Î <sup>2</sup> -aminocycloalkanol precursors.<br>Tetrahedron: Asymmetry, 2013, 24, 1421-1425.                                                                  | 1.8  | 9         |
| 42 | Engineering the Biosynthesis of the Polyketide-Nonribosomal Peptide Collismycin A for Generation of Analogs with Neuroprotective Activity. Chemistry and Biology, 2013, 20, 1022-1032.                                        | 6.2  | 35        |
| 43 | Lipase-catalyzed preparation of chromomycin A3 analogues and biological evaluation for anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4310-4313.                                                  | 1.0  | 1         |
| 44 | A Novel Mithramycin Analogue with High Antitumor Activity and Less Toxicity Generated by Combinatorial Biosynthesis. Journal of Medicinal Chemistry, 2012, 55, 5813-5825.                                                     | 2.9  | 71        |
| 45 | Regioselective Enzymatic Acylation of Aureolic Acids to Obtain Novel Analogues with Improved Antitumor Activity. Advanced Synthesis and Catalysis, 2012, 354, 1500-1508.                                                      | 2.1  | 6         |
| 46 | Elucidating the Biosynthetic Pathway for the Polyketide-Nonribosomal Peptide Collismycin A:<br>Mechanism for Formation of the 2,2′-bipyridyl Ring. Chemistry and Biology, 2012, 19, 399-413.                                  | 6.2  | 46        |
| 47 | Straightforward preparation of biologically active 1-aryl- and 1-heteroarylpropan-2-amines in enantioenriched form. Organic and Biomolecular Chemistry, 2011, 9, 2274.                                                        | 1.5  | 33        |
| 48 | Regioselective enzymatic acylation of complex natural products: expanding molecular diversity.<br>Chemical Society Reviews, 2011, 40, 5321.                                                                                   | 18.7 | 69        |
| 49 | The chromomycin CmmA acetyltransferase: a membraneâ€bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin. Microbial Biotechnology, 2011, 4, 226-238.                                      | 2.0  | 27        |
| 50 | Highly efficient chemoenzymatic syntheses of trans-2-aminocyclopentanol derivatives. Journal of<br>Molecular Catalysis B: Enzymatic, 2009, 59, 111-115.                                                                       | 1.8  | 7         |
| 51 | An efficient chemoenzymatic method to prepare optically active primary–tertiary<br>trans-cycloalkane-1,2-diamines. Tetrahedron, 2009, 65, 8028-8034.                                                                          | 1.0  | 9         |
| 52 | trans-Cyclopentane-1,2-diamine: the second youth of the forgotten diamine. Chemical Society Reviews, 2009, 38, 1916.                                                                                                          | 18.7 | 44        |
| 53 | Chemoenzymatic preparation of optically active anthracene derivatives. Tetrahedron: Asymmetry, 2008, 19, 2589-2593.                                                                                                           | 1.8  | 7         |
| 54 | Cycloalkane-1,2-diamine derivatives as chiral solvating agents. Study of the structural variables controlling the NMR enantiodiscrimination of chiral carboxylic acids. Tetrahedron, 2008, 64, 7709-7717.                     | 1.0  | 38        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An improved chemoenzymatic synthesis of both enantiomers of trans-cyclopentane-1,2-diamine.<br>Tetrahedron: Asymmetry, 2008, 19, 751-755.                                                                           | 1.8 | 16        |
| 56 | A Biocatalytic Approach to Synthesizing Optically Active Orthogonally<br>Protectedtrans-Cyclopentane-1,2-Diamine Derivatives. Journal of Organic Chemistry, 2007, 72, 1309-1314.                                    | 1.7 | 26        |
| 57 | New pincer-like receptor derived from trans-cyclopentane-1,2-diamine as a chiral shift reagent for carboxylic acids. Tetrahedron: Asymmetry, 2007, 18, 1981-1985.                                                   | 1.8 | 23        |
| 58 | Chemoenzymatic syntheses of novel ligands derived from trans-cyclohexane-1,2-diamine: application in the enantioselective addition of diethylzinc to aromatic aldehydes. Tetrahedron: Asymmetry, 2006, 17, 449-454. | 1.8 | 17        |
| 59 | Redesigning the mechanism of the lipase-catalysed aminolysis of esters. Tetrahedron: Asymmetry, 2006, 17, 1264-1274.                                                                                                | 1.8 | 16        |
| 60 | Optically activetrans-2-aminocyclopentanols: Chemoenzymatic preparation and application as chiral ligands. Biotechnology Journal, 2006, 1, 835-841.                                                                 | 1.8 | 6         |
| 61 | Enantioselective acylation of rac-2-phenylcycloalkanamines catalyzed by lipases. Tetrahedron:<br>Asymmetry, 2005, 16, 3070-3076.                                                                                    | 1.8 | 18        |
| 62 | Kinetic Resolution of 1-Biaryl- and 1-(Pyridylphenyl)alkan-1-ols Catalysed by the Lipase B fromCandida antarctica. Advanced Synthesis and Catalysis, 2005, 347, 695-702.                                            | 2.1 | 18        |
| 63 | Chemoenzymatic Preparation of Optically Activetrans-Cyclohexane-1,2-diamine Derivatives: An Efficient<br>Synthesis of the Analgesic U-(â^')-50,488. Chemistry - A European Journal, 2004, 10, 5788-5794.            | 1.7 | 38        |
| 64 | Kinetic resolution of (±)-trans- and (±)-cis-2-phenylcyclopentanamine by CALB-catalyzed aminolysis of<br>esters: the key role of the leaving group. Tetrahedron: Asymmetry, 2004, 15, 481-488.                      | 1.8 | 43        |
| 65 | Chemoenzymatic preparation of optically active β-amino-cyclohexanols and their application in the enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron: Asymmetry, 2004, 15, 1335-1341.            | 1.8 | 21        |
| 66 | CAL-B-catalyzed resolution of some pharmacologically interesting β–substituted isopropylamines.<br>Tetrahedron: Asymmetry, 2002, 13, 1315-1320.                                                                     | 1.8 | 73        |