Rami Burstein

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8982903/rami-burstein-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96 107 9,224 44 h-index g-index citations papers 10,879 6.43 109 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
107	Migraine <i>Nature Reviews Disease Primers</i> , 2022 , 8, 2	51.1	16
106	FollowTheSutures: Piloting a new way to administer onabotulinumtoxinA for chronic migraine <i>Cephalalgia</i> , 2022 , 3331024211067775	6.1	1
105	Atogepant - an orally-administered CGRP antagonist - attenuates activation of meningeal nociceptors by CSD <i>Cephalalgia</i> , 2022 , 3331024221083544	6.1	O
104	OnabotulinumtoxinA affects cortical recovery period but not occurrence or propagation of cortical spreading depression in rats with compromised blood-brain barrier. <i>Pain</i> , 2021 , 162, 2418-2427	8	2
103	Efficacy of erenumab in chronic migraine patients with and without ictal allodynia. <i>Cephalalgia</i> , 2021 , 41, 1152-1160	6.1	3
102	Migraine: interactions between brain's trait and state. CNS Spectrums, 2021, 1-9	1.8	0
101	Altered Brain Network Connectivity Underlies Persistent Post-Traumatic Headache following Mild Traumatic Brain Injury in Youth. <i>Journal of Neurotrauma</i> , 2021 , 38, 1632-1641	5.4	2
100	Combined onabotulinumtoxinA/atogepant treatment blocks activation/sensitization of high-threshold and wide-dynamic range neurons. <i>Cephalalgia</i> , 2021 , 41, 17-32	6.1	11
99	Adverse effects of erenumab on cerebral proliferative angiopathy: A case report. <i>Cephalalgia</i> , 2021 , 41, 122-126	6.1	7
98	Ictal and interictal brain activation in episodic migraine: Neural basis for extent of allodynia. <i>PLoS ONE</i> , 2021 , 16, e0244320	3.7	6
97	Fremanezumab and its isotype slow propagation rate and shorten cortical recovery period but do not prevent occurrence of cortical spreading depression in rats with compromised blood-brain barrier. <i>Pain</i> , 2020 , 161, 1037-1043	8	13
96	Dizziness and vertigo during the prodromal phase and headache phase of migraine: A systematic review and meta-analysis. <i>Cephalalgia</i> , 2020 , 40, 1095-1103	6.1	7
95	Dual Therapy With Anti-CGRP Monoclonal Antibodies and Botulinum Toxin for Migraine Prevention: Is There a Rationale?. <i>Headache</i> , 2020 , 60, 1056-1065	4.2	23
94	Activation of Peripheral and Central Trigeminovascular Neurons by Seizure: Implications for Ictal and Postictal Headache. <i>Journal of Neuroscience</i> , 2020 , 40, 5314-5326	6.6	2
93	Unrecognized challenges of treating status migrainosus: An observational study. <i>Cephalalgia</i> , 2020 , 40, 818-827	6.1	4
92	Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. <i>Headache</i> , 2020 , 60, 1259-1272	4.2	33
91	Mapping migraine to a common brain network. <i>Brain</i> , 2020 , 143, 541-553	11.2	27

90	Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier. <i>Cephalalgia</i> , 2020 , 40, 229-240	6.1	39
89	Nightly sleep duration, fragmentation, and quality and daily risk of migraine. <i>Neurology</i> , 2020 , 94, e489	-€496	18
88	Celecoxib reduces cortical spreading depression-induced macrophage activation and dilatation of dural but not pial arteries in rodents: implications for mechanism of action in terminating migraine attacks. <i>Pain</i> , 2020 , 161, 1019-1026	8	2
87	Headache in Petrous Apicitis: A Case Report of Chronic Migraine-like Headache Due to Peripheral Pathology. <i>Headache</i> , 2019 , 59, 1821-1826	4.2	3
86	Hypothalamic regulation of headache and migraine. <i>Cephalalgia</i> , 2019 , 39, 1710-1719	6.1	42
85	Exploring the effects of extracranial injections of botulinum toxin type A on prolonged intracranial meningeal nociceptors responses to cortical spreading depression in female rats. <i>Cephalalgia</i> , 2019 , 39, 1358-1365	6.1	16
84	CSD-Induced Arterial Dilatation and Plasma Protein Extravasation Are Unaffected by Fremanezumab: Implications for CGRP's Role in Migraine with Aura. <i>Journal of Neuroscience</i> , 2019 , 39, 6001-6011	6.6	25
83	Migraine and the trigeminovascular system-40 years and counting. Lancet Neurology, The, 2019, 18, 795	5-804	114
82	Remote Electrical Neuromodulation (REN) Relieves Acute Migraine: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. <i>Headache</i> , 2019 , 59, 1240-1252	4.2	50
81	Migraine in the Young Brain: Adolescents vs. Young Adults. <i>Frontiers in Human Neuroscience</i> , 2019 , 13, 87	3.3	5
80	The association between migraine and hospital readmission due to pain after surgery: A hospital registry study. <i>Cephalalgia</i> , 2019 , 39, 286-295	6.1	6
79	Current understanding of photophobia, visual networks and headaches. <i>Cephalalgia</i> , 2019 , 39, 1623-16	3 6 .1	34
78	Emerging evidence of occipital nerve compression in unremitting head and neck pain. <i>Journal of Headache and Pain</i> , 2019 , 20, 76	8.8	18
77	The migraine eye: distinct rod-driven retinal pathwaysSresponse to dim light challenges the visual cortex hyperexcitability theory. <i>Pain</i> , 2019 , 160, 569-578	8	15
76	Neurobiology of Photophobia. <i>Journal of Neuro-Ophthalmology</i> , 2019 , 39, 94-102	2.6	16
75	Modulation of brain networks by sumatriptan-naproxen in the inflammatory soup migraine model. <i>Pain</i> , 2019 , 160, 2161-2171	8	4
74	Reply to Spitschan. <i>Pain</i> , 2019 , 160, 2409-2410	8	
73	Tracking patients with chronic occipital headache after occipital nerve decompression surgery: A case series. <i>Cephalalgia</i> , 2019 , 39, 556-563	6.1	9

72	Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache. <i>Journal of Neuroscience</i> , 2019 , 39, 1867-1880	6.6	37
71	Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. <i>Annals of Neurology</i> , 2018 , 83, 508-521	9.4	43
70	Responsivity of Periaqueductal Gray Connectivity Is Related to Headache Frequency in Episodic Migraine. <i>Frontiers in Neurology</i> , 2018 , 9, 61	4.1	26
69	Color-selective photophobia in ictal vs interictal migraineurs and in healthy controls. <i>Pain</i> , 2018 , 159, 2030-2034	8	13
68	Terminating Migraine-Associated Allodynia Using Oral Suspension Diclofenac: A Prospective Non-Randomized Drug Trial. <i>Headache</i> , 2017 , 57, 478-486	4.2	
67	Brain network alterations in the inflammatory soup animal model of migraine. <i>Brain Research</i> , 2017 , 1660, 36-46	3.7	23
66	Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache. <i>Journal of Neuroscience</i> , 2017 , 37, 2904-2915	6.6	111
65	Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. <i>Headache</i> , 2017 , 57 Suppl 2, 97-111	4.2	33
64	Sensitization and Photophobia in Migraine 2017 , 125-138		
63	Extracranial origin of headache. Current Opinion in Neurology, 2017, 30, 263-271	7.1	38
6 ₃	Extracranial origin of headache. <i>Current Opinion in Neurology</i> , 2017 , 30, 263-271 In child and adult migraineurs the somatosensory cortex stands out lagain: An arterial spin labeling investigation. <i>Human Brain Mapping</i> , 2017 , 38, 4078-4087	7.1 5.9	38 16
	In child and adult migraineurs the somatosensory cortex stands out 🗓 gain: An arterial spin	,	
62	In child and adult migraineurs the somatosensory cortex stands out lagain: An arterial spin labeling investigation. <i>Human Brain Mapping</i> , 2017 , 38, 4078-4087 Reply: Pupil area and photopigment spectral sensitivity are relevant to study of migraine	5.9	16
62	In child and adult migraineurs the somatosensory cortex stands out lagain: An arterial spin labeling investigation. <i>Human Brain Mapping</i> , 2017 , 38, 4078-4087 Reply: Pupil area and photopigment spectral sensitivity are relevant to study of migraine photophobia. <i>Brain</i> , 2017 , 140, e3 Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (ADBut	5.9	16
62 61 60	In child and adult migraineurs the somatosensory cortex stands out [again: An arterial spin labeling investigation. <i>Human Brain Mapping</i> , 2017 , 38, 4078-4087 Reply: Pupil area and photopigment spectral sensitivity are relevant to study of migraine photophobia. <i>Brain</i> , 2017 , 140, e3 Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (All But Not Unmyelinated (C) Meningeal Nociceptors. <i>Journal of Neuroscience</i> , 2017 , 37, 10587-10596 Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal	5.9 11.2 6.6	16 2 100
62 61 60	In child and adult migraineurs the somatosensory cortex stands out lagain: An arterial spin labeling investigation. <i>Human Brain Mapping</i> , 2017 , 38, 4078-4087 Reply: Pupil area and photopigment spectral sensitivity are relevant to study of migraine photophobia. <i>Brain</i> , 2017 , 140, e3 Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (All But Not Unmyelinated (C) Meningeal Nociceptors. <i>Journal of Neuroscience</i> , 2017 , 37, 10587-10596 Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody. <i>Journal of Neuroscience</i> , 2017 , 37, 7149-7163 Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine.	5.9 11.2 6.6	16 2 100 86
6261605958	In child and adult migraineurs the somatosensory cortex stands out [again: An arterial spin labeling investigation. <i>Human Brain Mapping</i> , 2017 , 38, 4078-4087 Reply: Pupil area and photopigment spectral sensitivity are relevant to study of migraine photophobia. <i>Brain</i> , 2017 , 140, e3 Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (AliBut Not Unmyelinated (C) Meningeal Nociceptors. <i>Journal of Neuroscience</i> , 2017 , 37, 10587-10596 Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody. <i>Journal of Neuroscience</i> , 2017 , 37, 7149-7163 Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E5683-E569 Allodynia Is Associated With Initial and Sustained Response to Acute Migraine Treatment: Results	5.9 11.2 6.6 6.6	16 2 100 86 33

(2013-2016)

54	Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine. <i>ENeuro</i> , 2016 , 3,	3.9	28
53	Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine. <i>Frontiers in Human Neuroscience</i> , 2016 , 10, 366	3.3	34
52	Upregulation of inflammatory gene transcripts in periosteum of chronic migraineurs: Implications for extracranial origin of headache. <i>Annals of Neurology</i> , 2016 , 79, 1000-13	9.4	47
51	Migraine photophobia originating in cone-driven retinal pathways. <i>Brain</i> , 2016 , 139, 1971-86	11.2	83
50	Increased Amplitude of Thalamocortical Low-Frequency Oscillations in Patients with Migraine. <i>Journal of Neuroscience</i> , 2016 , 36, 8026-36	6.6	59
49	Migraine: multiple processes, complex pathophysiology. <i>Journal of Neuroscience</i> , 2015 , 35, 6619-29	6.6	382
48	Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. <i>Lancet Neurology, The</i> , 2015 , 14, 1091-100	24.1	179
47	Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. <i>Lancet Neurology, The</i> , 2015 , 14, 1081-90	24.1	202
46	Association of statin use and risk for severe headache or migraine by serum vitamin D status: a cross-sectional population-based study. <i>Cephalalgia</i> , 2015 , 35, 757-66	6.1	23
45	Simvastatin and vitamin D for migraine prevention: A randomized, controlled trial. <i>Annals of Neurology</i> , 2015 , 78, 970-81	9.4	64
44	Primary Somatosensory Cortices Contain Altered Patterns of Regional Cerebral Blood Flow in the Interictal Phase of Migraine. <i>PLoS ONE</i> , 2015 , 10, e0137971	3.7	34
43	A new electronic diary tool for mapping and tracking spatial and temporal head pain patterns in migraine. <i>Cephalalgia</i> , 2015 , 35, 417-25	6.1	13
42	Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. <i>PLoS ONE</i> , 2014 , 9, e95508	3.7	87
41	Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. <i>PLoS ONE</i> , 2014 , 9, e103929	3.7	61
40	Migraine Mistakes: Error Awareness. <i>Neuroscientist</i> , 2014 , 20, 291-304	7.6	12
39	Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains. <i>Cephalalgia</i> , 2014 , 34, 853-69	6.1	139
38	Common hippocampal structural and functional changes in migraine. <i>Brain Structure and Function</i> , 2013 , 218, 903-12	4	107
37	Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. <i>Pain</i> , 2013 , 154 Suppl 1,	8	453

36	Ezogabine (KCNQ2/3 channel opener) prevents delayed activation of meningeal nociceptors if given before but not after the occurrence of cortical spreading depression. <i>Epilepsy and Behavior</i> , 2013 , 28, 243-8	3.2	8
35	Her versus his migraine: multiple sex differences in brain function and structure. <i>Brain</i> , 2012 , 135, 2546	-59.2	143
34	Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. <i>Journal of Clinical Neurology (Korea</i> , 2012 , 8, 89-99	1.7	218
33	Can cortical spreading depression activate central trigeminovascular neurons without peripheral input? Pitfalls of a new concept. <i>Cephalalgia</i> , 2012 , 32, 509-11	6.1	19
32	Concurrent functional and structural cortical alterations in migraine. <i>Cephalalgia</i> , 2012 , 32, 607-20	6.1	139
31	Migraine and Other Pain Disorders 2011 , 81-95		
30	Migraine attacks the Basal Ganglia. <i>Molecular Pain</i> , 2011 , 7, 71	3.4	111
29	Activation of central trigeminovascular neurons by cortical spreading depression. <i>Annals of Neurology</i> , 2011 , 69, 855-65	9.4	247
28	Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. <i>Journal of Neuroscience</i> , 2011 , 31, 14204-17	6.6	123
27	A neural mechanism for exacerbation of headache by light. <i>Nature Neuroscience</i> , 2010 , 13, 239-45	25.5	360
26	Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. <i>Journal of Neuroscience</i> , 2010 , 30, 8807-14	6.6	250
25	Thalamic sensitization transforms localized pain into widespread allodynia. <i>Annals of Neurology</i> , 2010 , 68, 81-91	9.4	273
24	Sensory innervation of the calvarial bones of the mouse. <i>Journal of Comparative Neurology</i> , 2009 , 515, 331-48	3.4	118
23	Neural substrate of depression during migraine. <i>Neurological Sciences</i> , 2009 , 30 Suppl 1, S27-31	3.5	23
22	Almotriptan efficacy in migraine with developing allodynia is as high as the efficacy in migraine without allodyniabut is it the same in migraine with established allodynia?. <i>Headache</i> , 2009 , 49, 364-5	4.2	3
21	Migraine prophylaxis with botulinum toxin A is associated with perception of headache. <i>Toxicon</i> , 2009 , 54, 624-7	2.8	18
20	Cutaneous allodynia in the migraine population. <i>Annals of Neurology</i> , 2008 , 63, 148-58	9.4	367
19	Interictal dysfunction of a brainstem descending modulatory center in migraine patients. <i>PLoS ONE</i> , 2008 , 3, e3799	3.7	165

(1993-2005)

18	Anti-migraine action of triptans is preceded by transient aggravation of headache caused by activation of meningeal nociceptors. <i>Pain</i> , 2005 , 115, 21-8	8	36
17	Unitary hypothesis for multiple triggers of the pain and strain of migraine. <i>Journal of Comparative Neurology</i> , 2005 , 493, 9-14	3.4	160
16	Can allodynic migraine patients be identified interictally using a questionnaire?. <i>Neurology</i> , 2005 , 65, 1419-22	6.5	105
15	Implications of multimechanism therapy: when to treat?. <i>Neurology</i> , 2005 , 64, S16-20	6.5	20
14	Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 4274-9	11.5	196
13	Migraine, Sensitization of Trigeminovascular Neurons, and Triptan Therapy. <i>Headache Currents: A Journal for Recent Advances in Headache and Facial Pain</i> , 2004 , 1, 25-32		0
12	Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. <i>Annals of Neurology</i> , 2004 , 55, 27-36	9.4	293
11	Defeating migraine pain with triptans: a race against the development of cutaneous allodynia. <i>Annals of Neurology</i> , 2004 , 55, 19-26	9.4	488
10	Functional imaging of the human trigeminal system: opportunities for new insights into pain processing in health and disease. <i>Journal of Neurobiology</i> , 2004 , 61, 107-25		71
9	2003 Wolff Award: Possible parasympathetic contributions to peripheral and central sensitization during migraine. <i>Headache</i> , 2003 , 43, 704-14	4.2	134
8	An association between migraine and cutaneous allodynia. <i>Annals of Neurology</i> , 2000 , 47, 614-624	9.4	792
7	Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. <i>Journal of Neurophysiology</i> , 2000 , 84, 2078-112	3.2	194
6	An association between migraine and cutaneous allodynia 2000 , 47, 614		35
5	Cardiovascular and neuronal responses to head stimulation reflect central sensitization and cutaneous allodynia in a rat model of migraine. <i>Journal of Neurophysiology</i> , 1999 , 81, 479-93	3.2	68
4	Cells of origin of the trigeminohypothalamic tract in the rat. <i>Journal of Comparative Neurology</i> , 1998 , 400, 125-44	3.4	110
3	Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. <i>Journal of Neurophysiology</i> , 1998 , 79, 964-82	3.2	461
2	Distinct lateral and medial projections of the spinohypothalamic tract of the rat. <i>Journal of Comparative Neurology</i> , 1996 , 373, 549-74	3.4	37
1	Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. <i>Journal of Comparative Neurology</i> , 1993 , 335, 469-85	3.4	112