Carmine Maria Pappalardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8982824/publications.pdf

Version: 2024-02-01

28 papers 617 citations

394286 19 h-index 23 g-index

28 all docs 28 docs citations

28 times ranked 316 citing authors

#	Article	IF	CITATIONS
1	A Multibody System Approach for the Systematic Development of a Closed-Chain Kinematic Model for Two-Wheeled Vehicles. Machines, 2021, 9, 245.	1.2	22
2	A Parametric Study of a Deep Reinforcement Learning Control System Applied to the Swing-Up Problem of the Cart-Pole. Applied Sciences (Switzerland), 2020, 10, 9013.	1.3	32
3	Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Archive of Applied Mechanics, 2020, 90, 1961-2005.	1.2	24
4	On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mechanical Systems and Signal Processing, 2020, 142, 106745.	4.4	30
5	A Model Validating Technique for the Kinematic Study of Two-Wheeled Vehicles. Lecture Notes in Mechanical Engineering, 2020, , 549-558.	0.3	2
6	Topology Optimization Procedure of Aircraft Mechanical Components Based on Computer-Aided Design, Multibody Dynamics, and Finite Element Analysis. Lecture Notes in Mechanical Engineering, 2020, , 159-168.	0.3	11
7	A Reinforcement Learning Controller for the Swing-Up of the Furuta Pendulum. Lecture Notes in Networks and Systems, 2020, , 31-38.	0.5	1
8	An Inverse Dynamics Approach Based on the Fundamental Equations of Constrained Motion and on the Theory of Optimal Control. Lecture Notes in Mechanical Engineering, 2020, , 336-352.	0.3	0
9	Experimental Identification of a Car Dynamic Model Using the Numerical Algorithms for Subspace State-Space System Identification. Lecture Notes in Mechanical Engineering, 2020, , 14-23.	0.3	0
10	A General Method for Performing an Integrated CAD-MBD-FEM Analysis. Lecture Notes in Mechanical Engineering, 2020, , 264-272.	0.3	0
11	Redesign of an Aircraft Cargo Door by Using a CAD-MBD-FEM Integration Method. Lecture Notes in Mechanical Engineering, 2020, , 53-62.	0.3	0
12	Multibody modeling and nonlinear control of the pantograph/catenary system. Archive of Applied Mechanics, 2019, 89, 1589-1626.	1.2	27
13	On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Archive of Applied Mechanics, 2019, 89, 669-698.	1.2	25
14	Forward and Inverse Dynamics of a Unicycle-Like Mobile Robot. Machines, 2019, 7, 5.	1.2	19
15	A time-domain system identification numerical procedure for obtaining linear dynamical models of multibody mechanical systems. Archive of Applied Mechanics, 2018, 88, 1325-1347.	1.2	27
16	Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dynamics, 2018, 91, 2171-2202.	2.7	40
17	On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Archive of Applied Mechanics, 2018, 88, 419-451.	1.2	34
18	System Identification Algorithm for Computing the Modal Parameters of Linear Mechanical Systems. Machines, 2018, 6, 12.	1.2	31

#	Article	IF	CITATIONS
19	Use of the Adjoint Method for Controlling the Mechanical Vibrations of Nonlinear Systems. Machines, 2018, 6, 19.	1.2	30
20	A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems. Archive of Applied Mechanics, 2018, 88, 2153-2177.	1,2	28
21	On the Computational Methods for Solving the Differential-Algebraic Equations of Motion of Multibody Systems. Machines, 2018, 6, 20.	1.2	21
22	Dynamic Analysis of Planar Rigid Multibody Systems modeled using Natural Absolute Coordinates. Applied and Computational Mechanics, 2018, 12, .	0.1	19
23	Control of nonlinear vibrations using the adjoint method. Meccanica, 2017, 52, 2503-2526.	1.2	31
24	Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics, 2017, 89, 2905-2932.	2.7	31
25	On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Archive of Applied Mechanics, 2017, 87, 1647-1665.	1.2	29
26	Experimental Identification and Control of a Frame Structure Using an Actively Controlled Inertial-Based Vibration Absorber. , 2017, , .		3
27	A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dynamics, 2015, 81, 1841-1869.	2.7	71
28	Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica, 2014, 49, 1547-1559.	1.2	29