Lauren E Hay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8982696/publications.pdf

Version: 2024-02-01

Ι ΛΙΙΔΕΝ Ε ΗΛΥ

#	Article	IF	CITATIONS
1	Assessing the Impact of Drought on Arsenic Exposure from Private Domestic Wells in the Conterminous United States. Environmental Science & Technology, 2021, 55, 1822-1831.	4.6	20
2	Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow. New Phytologist, 2020, 225, 693-712.	3.5	8
3	Baseline Conditions and Projected Future Hydro-Climatic Change in National Parks in the Conterminous United States. Water (Switzerland), 2020, 12, 1704.	1.2	2
4	Spatiotemporal Variability of Modeled Watershed Scale Surfaceâ€Đepression Storage and Runoff for the Conterminous United States. Journal of the American Water Resources Association, 2020, 56, 16-29.	1.0	2
5	Runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model. Hydrological Processes, 2020, 34, 2365.	1.1	6
6	Disentangling the potential effects of landâ€use and climate change on stream conditions. Global Change Biology, 2020, 26, 2251-2269.	4.2	14
7	Calibration of the US Geological Survey National Hydrologic Model in Ungauged Basins Using Statistical At-Site Streamflow Simulations. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	5
8	Gravity Recovery and Climate Experiment (GRACE) Storage Change Characteristics (2003–2016) over Major Surface Basins and Principal Aquifers in the Conterminous United States. Remote Sensing, 2019, 11, 936.	1.8	7
9	The U. S. Geological Survey National Hydrologic Model infrastructure: Rationale, description, and application of a watershed-scale model for the conterminous United States. Environmental Modelling and Software, 2019, 111, 192-203.	1.9	37
10	Do Downscaled General Circulation Models Reliably Simulate Historical Climatic Conditions?. Earth Interactions, 2018, 22, 1-22.	0.7	6
11	Modelling surfaceâ€water depression storage in a Prairie Pothole Region. Hydrological Processes, 2018, 32, 462-479.	1.1	18
12	Enhancement of a Parsimonious Water Balance Model to Simulate Surface Hydrology in a Glacierized Watershed. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1116-1132.	1.0	7
13	Quantifying uncertainty in simulated streamflow and runoff from a continental-scale monthly water balance model. Advances in Water Resources, 2018, 122, 166-175.	1.7	22
14	Hydrologic Regime Changes in a High-Latitude Glacierized Watershed under Future Climate Conditions. Water (Switzerland), 2018, 10, 128.	1.2	13
15	Spatiotemporal Variability of Snow Depletion Curves Derived from <scp>SNODAS</scp> for the Conterminous United States, 2004â€2013. Journal of the American Water Resources Association, 2017, 53, 655-666.	1.0	5
16	Towards simplification of hydrologic modeling: identification of dominant processes. Hydrology and Earth System Sciences, 2016, 20, 4655-4671.	1.9	52
17	Parameter regionalization of a monthly water balance model for the conterminous United States. Hydrology and Earth System Sciences, 2016, 20, 2861-2876.	1.9	41
18	Accelerating advances in continental domain hydrologic modeling. Water Resources Research, 2015, 51, 10078-10091.	1.7	102

LAUREN E HAY

#	Article	IF	CITATIONS
19	Effects of Climate and Land Cover on Hydrology in the Southeastern U.S.: Potential Impacts on Watershed Planning. Journal of the American Water Resources Association, 2015, 51, 1235-1261.	1.0	34
20	Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients. Journal of Hydrology, 2015, 521, 389-394.	2.3	26
21	A comparison of hydrologic models for ecological flows and water availability. Ecohydrology, 2015, 8, 1525-1546.	1.1	62
22	The Effects of Changing Land Cover on Streamflow Simulation in Puerto Rico. Journal of the American Water Resources Association, 2014, 50, 1575-1593.	1.0	16
23	Evaluation of Statistically Downscaled GCM Output as Input for Hydrological and Stream Temperature Simulation in the Apalachicola–Chattahoochee–Flint River Basin (1961–99). Earth Interactions, 2014, 18, 1-32.	0.7	13
24	Watershed-Scale Response to Climate Change through the Twenty-First Century for Selected Basins across the United States. Earth Interactions, 2011, 15, 1-37.	0.7	75
25	Impacts of Climate Change on the Growing Season in the United States. Earth Interactions, 2011, 15, 1-17.	0.7	38
26	Effects of Baseline Conditions on the Simulated Hydrologic Response to Projected Climate Change. Earth Interactions, 2011, 15, 1-23.	0.7	10
27	Simulating the Potential Effects of Climate Change in Two Colorado Basins and at Two Colorado Ski Areas. Earth Interactions, 2011, 15, 1-23.	0.7	15
28	Hydrologic Effects of Urbanization and Climate Change on the Flint River Basin, Georgia. Earth Interactions, 2011, 15, 1-25.	0.7	41
29	Characterizing Climate-Change Impacts on the 1.5-yr Flood Flow in Selected Basins across the United States: A Probabilistic Approach. Earth Interactions, 2011, 15, 1-16.	0.7	14
30	Hydrologic effects of climate change in the Yukon River Basin. Climatic Change, 2010, 100, 509-523.	1.7	38
31	Reducing Streamflow Forecast Uncertainty: Application and Qualitative Assessment of the Upper Klamath River Basin, Oregon ¹ . Journal of the American Water Resources Association, 2009, 45, 580-596.	1.0	17
32	STEP WISE, MULTIPLE OBJECTIVE CALIBRATION OF A HYDROLOGIC MODEL FOR A SNOWMELT DOMINATED BASIN. Journal of the American Water Resources Association, 2006, 42, 877-890.	1.0	101
33	SPATIAL VARIABILITY IN WATER-BALANCE MODEL PERFORMANCE IN THE CONTERMINOUS UNITED STATES. Journal of the American Water Resources Association, 2002, 38, 847-860.	1.0	45
34	A COMPARISON OF DELTA CHANGE AND DOWNSCALED GCM SCENARIOS FOR THREE MOUNTAINOUS BASINS IN THE UNITED STATES1. Journal of the American Water Resources Association, 2000, 36, 387-397.	1.0	547
35	A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado. Journal of Hydrology, 1999, 225, 67-91.	2.3	326
36	VERIFICATION OF THE RHEA-OROGRAPHIC-PRECIPITATION MODEL. Journal of the American Water Resources Association, 1998, 34, 103-112.	1.0	14