Tomiko M Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8982676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic CO ₂ Reduction Using Water as an Electron Donor under Visible Light Irradiation by Z-Scheme and Photoelectrochemical Systems over (CuGa) _{0.5} ZnS ₂ in the Presence of Basic Additives. Journal of the American Chemical Society, 2022, 144, 2323-2332.	13.7	56
2	Solar-Driven CO ₂ Reduction Using a Semiconductor/Molecule Hybrid Photosystem: From Photocatalysts to a Monolithic Artificial Leaf. Accounts of Chemical Research, 2022, 55, 933-943.	15.6	47
3	Photocatalytic CO2 reduction by a Z-scheme mechanism in an aqueous suspension of particulate (CuGa)0.3Zn1.4S2, BiVO4 and a Co complex operating dual-functionally as an electron mediator and as a cocatalyst. Applied Catalysis B: Environmental, 2022, 316, 121600.	20.2	8
4	Study of Excited States and Electron Transfer of Semiconductorâ€Metalâ€Complex Hybrid Photocatalysts for CO 2 Reduction by Using Picosecond Timeâ€Resolved Spectroscopies. Chemistry - A European Journal, 2021, 27, 1127-1137.	3.3	4
5	Carbon Nanohorn Support for Solar driven CO ₂ Reduction to CO Catalyzed by Mnâ€complex in an All Earthâ€ebundant System. ChemNanoMat, 2021, 7, 596-599.	2.8	3
6	Particulate photocatalytic reactors with spectrum-splitting function for artificial photosynthesis. Physical Chemistry Chemical Physics, 2021, 23, 15659-15674.	2.8	2
7	Electrochemical CO ₂ reduction over nanoparticles derived from an oxidized Cu–Ni intermetallic alloy. Chemical Communications, 2020, 56, 15008-15011.	4.1	10
8	Operando X-ray absorption spectroscopy of hyperfine β-FeOOH nanorods modified with amorphous Ni(OH)2 under electrocatalytic water oxidation conditions. Chemical Communications, 2020, 56, 5158-5161.	4.1	12
9	High-pressure synthesis of Îμ-FeOOH from β-FeOOH and its application to the water oxidation catalyst. RSC Advances, 2020, 10, 44756-44767.	3.6	6
10	Solar-driven CO ₂ to CO reduction utilizing H ₂ O as an electron donor by earth-abundant Mn–bipyridine complex and Ni-modified Fe-oxyhydroxide catalysts activated in a single-compartment reactor. Chemical Communications, 2019, 55, 237-240.	4.1	33
11	First principles calculations of surface dependent electronic structures: a study on β-FeOOH and γ-FeOOH. Physical Chemistry Chemical Physics, 2019, 21, 18486-18494.	2.8	17
12	Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visibleâ€Lightâ€Driven Overall Water Splitting. ChemSusChem, 2019, 12, 1807-1824.	6.8	25
13	Highly Enhanced Electrochemical Water Oxidation Reaction over Hyperfine β-FeOOH(Cl):Ni Nanorod Electrode by Modification with Amorphous Ni(OH)2. Bulletin of the Chemical Society of Japan, 2018, 91, 778-786.	3.2	24
14	Effects of Ta ₂ O ₅ Surface Modification by NH ₃ on the Electronic Structure of a Ru-Complex/N–Ta ₂ O ₅ Hybrid Photocatalyst for Selective CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 1921-1929.	3.1	12
15	Enhancement of CO2 reduction activity under visible light irradiation over Zn-based metal sulfides by combination with Ru-complex catalysts. Applied Catalysis B: Environmental, 2018, 224, 572-578.	20.2	55
16	Electrochemical Water Oxidation Catalysed by CoO o ₂ O ₃ o(OH) ₂ Multiphaseâ€Nanoparticles Prepared by Femtosecond Laser Ablation in Water. ChemistrySelect, 2018, 3, 4979-4984.	1.5	14
17	Z-Schematic and visible-light-driven CO ₂ reduction using H ₂ O as an electron donor by a particulate mixture of a Ru-complex/(CuGa) _{1â^x} Zn _{2x} S ₂ hybrid catalyst, BiVO ₄ and an electron mediator. Chemical Communications, 2018, 54, 10199-10202.	4.1	52
18	Highly crystalline Î ² -FeOOH(Cl) nanorod catalysts doped with transition metals for efficient water oxidation. Sustainable Energy and Fuels, 2017, 1, 636-643.	4.9	40

Томіко M Suzuki

#	Article	IF	CITATIONS
19	Stoichiometric water splitting using a p-type Fe ₂ O ₃ based photocathode with the aid of a multi-heterojunction. Journal of Materials Chemistry A, 2017, 5, 6483-6493.	10.3	34
20	Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-Type N-doped Ta2O5 photocathode active under visible light irradiation. Applied Catalysis B: Environmental, 2017, 202, 597-604.	20.2	49
21	Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 13283-13290.	10.3	65
22	Nitrogen and transition-metal codoped titania nanotube arrays for visible-light-sensitive photoelectrochemical water oxidation. Chemical Communications, 2014, 50, 7614.	4.1	17
23	Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction. Journal of Materials Chemistry, 2012, 22, 24584.	6.7	65
24	Direct assembly synthesis of metal complex–semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction. Chemical Communications, 2011, 47, 8673.	4.1	108
25	Selective CO ₂ Conversion to Formate Conjugated with H ₂ O Oxidation Utilizing Semiconductor/Complex Hybrid Photocatalysts. Journal of the American Chemical Society, 2011, 133, 15240-15243.	13.7	458
26	Dual functional modification by N doping of Ta2O5: p-type conduction in visible-light-activated N-doped Ta2O5. Applied Physics Letters, 2010, 96, .	3.3	56
27	Synthesis and catalytic properties of sulfonic acid-functionalized monodispersed mesoporous silica spheres. Microporous and Mesoporous Materials, 2008, 111, 350-358.	4.4	38
28	Pore-expansion of organically functionalized monodispersed mesoporous silica spheres and pore-size effects on adsorption and catalytic properties. Microporous and Mesoporous Materials, 2008, 116, 284-291.	4.4	20
29	Direct synthesis of amino-functionalized monodispersed mesoporous silica spheres and their catalytic activity for nitroaldol condensation. Journal of Molecular Catalysis A, 2008, 280, 224-232.	4.8	64
30	Enhancement of catalytic performance by creating shell layers on sulfonic acid-functionalized monodispersed mesoporous silica spheres. Journal of Catalysis, 2008, 258, 265-272.	6.2	29