Hamida Hammad

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8982413/hamida-hammad-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

175	19,333	70	138
papers	citations	h-index	g-index
184 ext. papers	22,644 ext. citations	12. 8 avg, IF	7.2 L-index

#	Paper	IF	Citations
175	Future prospects of translational and clinical eosinophil research 2022 , 253-262		O
174	IFN-(g)uarding the niche-Keeping ILC2 in check Immunity, 2022, 55, 190-192	32.3	
173	Emerging Paradigms in Type 2 Immunity Annual Review of Immunology, 2022, 40, 443-467	34.7	1
172	Isolation of Conventional Murine Lung Dendritic Cell Subsets. Methods in Molecular Biology, 2022, 237-	2554	
171	ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. <i>Cell Reports</i> , 2021 , 37, 110051	10.6	1
170	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	2
169	Sterilizing Immunity against SARS-CoV-2 Infection in Mice by a Single-Shot and Lipid Amphiphile Imidazoquinoline TLR7/8 Agonist-Adjuvanted Recombinant Spike Protein Vaccine*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9467-9473	16.4	17
168	The basic immunology of asthma. <i>Cell</i> , 2021 , 184, 1469-1485	56.2	69
167	Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation. <i>Mucosal Immunology</i> , 2021 , 14, 1160-1171	9.2	8
166	IRE1Idoes not affect mucus secretion during allergic asthma development in a house dust mite murine model. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2021 , 76, 3546-3549	9.3	O
165	Charcot-Leyden crystals and other protein crystals driving type 2 immunity and allergy. <i>Current Opinion in Immunology</i> , 2021 , 72, 72-78	7.8	8
164	Tnfaip3 expression in pulmonary conventional type 1 Langerin-expressing dendritic cells regulates T helper 2-mediated airway inflammation in mice. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2020 , 75, 2587-2598	9.3	3
163	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. <i>Immunity</i> , 2020 , 52, 1039-1056.e9	32.3	120
162	Rbm7 in Structural Cells: A NEAT Way to Control Fibrosis. <i>Immunity</i> , 2020 , 52, 429-431	32.3	2
161	Sterilizing Immunity against SARS-CoV-2 Infection in Mice by a Single-Shot and Modified Imidazoquinoline TLR7/8 Agonist-Adjuvanted Recombinant Spike Protein Vaccine 2020 ,		3
160	TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31331-31342	11.5	5
159	Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity 2020 , 8,		67

(2018-2020)

158	TAOK3 is a MAP3K contributing to osteoblast differentiation and skeletal mineralization. <i>Biochemical and Biophysical Research Communications</i> , 2020 , 531, 497-502	3.4	5
157	Wnt and Hippo pathways in regulatory T cells: a NOTCH above in asthma. <i>Nature Immunology</i> , 2020 , 21, 1313-1314	19.1	5
156	CCR2- and Flt3-Dependent Inflammatory Conventional Type 2 Dendritic Cells Are Necessary for the Induction of Adaptive Immunity by the Human Vaccine Adjuvant System AS01. <i>Frontiers in Immunology</i> , 2020 , 11, 606805	8.4	7
155	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). <i>European Journal of Immunology</i> , 2019 , 49, 1457-1973	6.1	485
154	How a farming environment protects from atopy. <i>Current Opinion in Immunology</i> , 2019 , 60, 163-169	7.8	12
153	Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. <i>Science</i> , 2019 , 364,	33.3	114
152	The Cytokines of Asthma. <i>Immunity</i> , 2019 , 50, 975-991	32.3	340
151	Prophylactic allergen immunotherapy with Der p 2 prevents murine asthma by regulating lung GM-CSF. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 143, 2307-2311.e5	11.5	4
150	IL-33trap is a novel IL-33-neutralizing biologic that inhibits allergic airway inflammation. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 144, 204-215	11.5	29
149	Single-Cell RNA Sequencing of the T Helper Cell Response to House Dust Mites Defines a Distinct Gene Expression Signature in Airway Th2 Cells. <i>Immunity</i> , 2019 , 51, 169-184.e5	32.3	79
148	The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 144, 1648-1659.e9	11.5	22
147	Professional and 'Amateur' Antigen-Presenting Cells In Type 2 Immunity. <i>Trends in Immunology</i> , 2019 , 40, 22-34	14.4	40
146	Role of NKp46 natural killer cells in house dust mite-driven asthma. <i>EMBO Molecular Medicine</i> , 2018 , 10,	12	9
145	Co-Activation of Glucocorticoid Receptor and Peroxisome Proliferator-Activated Receptor-In Murine Skin Prevents Worsening of Atopic March. <i>Journal of Investigative Dermatology</i> , 2018 , 138, 1360-	- 1 3⁄70	10
144	Osteopontin Promotes Protective Antigenic Tolerance against Experimental Allergic Airway Disease. <i>Journal of Immunology</i> , 2018 , 200, 1270-1282	5.3	4
143	Isolation of Conventional Murine Lung Dendritic Cell Subsets. <i>Current Protocols in Immunology</i> , 2018 , 120, 3.7B.1-3.7B.16	4	4
142	The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 141, 549-559.e7	11.5	73
141	TNF-Induced protein 3 levels in lung dendritic cells instruct T2 or T17´cell differentiation in eosinophilic or neutrophilic asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 141, 1620-1633.e1	1 1.5	30

140	Langerhans Cells: Sensing the Environment in Health and Disease. Frontiers in Immunology, 2018, 9, 93	8.4	84
139	A bispecific antibody strategy to target multiple type 2 cytokines in asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 142, 1185-1193.e4	11.5	19
138	The hygiene hypothesis: immunological mechanisms of airway tolerance. <i>Current Opinion in Immunology</i> , 2018 , 54, 102-108	7.8	31
137	Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. <i>ACS Nano</i> , 2018 , 12, 9815-9829	16.7	46
136	The emerging role of ADAM metalloproteinases in immunity. <i>Nature Reviews Immunology</i> , 2018 , 18, 745	5 <i>-3</i> (5§	92
135	The Generation and Use of Allergen-Specific TCR Transgenic Animals. <i>Methods in Molecular Biology</i> , 2018 , 1799, 183-210	1.4	2
134	Murine Models of Allergic Asthma. <i>Methods in Molecular Biology</i> , 2017 , 1559, 121-136	1.4	38
133	Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. <i>Nature Immunology</i> , 2017 , 18, 313-320	19.1	45
132	Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4-dependent dermal dendritic cells. <i>Journal of Allergy and Clinical Immunology</i> , 2017 , 140, 1364-1377.e2	11.5	40
131	Myeloid Cells in Asthma. <i>Microbiology Spectrum</i> , 2017 , 5,	8.9	8
131	Myeloid Cells in Asthma. <i>Microbiology Spectrum</i> , 2017 , 5, Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. <i>Nature Communications</i> , 2017 , 8, 14937	8.9	8 76
	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma.	17.4	
130	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nature Communications, 2017, 8, 14937	17.4	76
130	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nature Communications, 2017, 8, 14937 Bacteria isolated from lung modulate asthma susceptibility in mice. ISME Journal, 2017, 11, 1061-1074 A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of	17.4	76 53 90
130 129 128	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. <i>Nature Communications</i> , 2017 , 8, 14937 Bacteria isolated from lung modulate asthma susceptibility in mice. <i>ISME Journal</i> , 2017 , 11, 1061-1074 A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. <i>Nature Immunology</i> , 2017 , 18, 1310-1320	17.4	76 53 90
130 129 128	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. <i>Nature Communications</i> , 2017 , 8, 14937 Bacteria isolated from lung modulate asthma susceptibility in mice. <i>ISME Journal</i> , 2017 , 11, 1061-1074 A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. <i>Nature Immunology</i> , 2017 , 18, 1310-1320 The immunology of the allergy epidemic and the hygiene hypothesis. <i>Nature Immunology</i> , 2017 , 18, 107 Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the	17.4 11.9 19.1	76 53 90 3195
130 129 128 127	Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. <i>Nature Communications</i> , 2017 , 8, 14937 Bacteria isolated from lung modulate asthma susceptibility in mice. <i>ISME Journal</i> , 2017 , 11, 1061-1074 A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. <i>Nature Immunology</i> , 2017 , 18, 1310-1320 The immunology of the allergy epidemic and the hygiene hypothesis. <i>Nature Immunology</i> , 2017 , 18, 107 Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. <i>Immunological Reviews</i> , 2017 , 278, 131-144 House dust mite-driven asthma and allergen-specific T cells depend on B cells when the amount of	17.4 11.9 19.1 16.4 9.83 11.3	76 53 90 3195 42

122 Myeloid Cells in Asthma **2017**, 739-757

121	IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively. <i>Immunity</i> , 2016 , 45, 626-640	32.3	157
120	GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid. <i>Journal of Immunology</i> , 2016 , 197, 4312-4324	5.3	7
119	Dendritic Cells and Type 2 Inflammation 2016 , 33-51		
118	Early IL-1 Signaling Promotes iBALT Induction after Influenza Virus Infection. <i>Frontiers in Immunology</i> , 2016 , 7, 312	8.4	20
117	A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. <i>PLoS Pathogens</i> , 2016 , 12, e1005410	7.6	38
116	Mouse Models of Asthma. Current Protocols in Mouse Biology, 2016, 6, 169-184	1.1	42
115	Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. <i>Immunity</i> , 2016 , 45, 1285-1298	32.3	187
114	Paving the way of systems biology and precision medicine in allergic diseases: the MeDALL success story: Mechanisms of the Development of ALLergy; EU FP7-CP-IP; Project No: 261357; 2010-2015. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2016 , 71, 1513-1525	9.3	63
113	Barrier Epithelial Cells and the Control of Type 2 Immunity. <i>Immunity</i> , 2015 , 43, 29-40	32.3	467
112	Neutralizing TNFIrestores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. <i>Mucosal Immunology</i> , 2015 , 8, 1212-25	9.2	56
111	RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. <i>Journal of Cell Biology</i> , 2015 , 210, 1133-52	7.3	39
110	Role of B Cell-Activating Factor in Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015 , 192, 706-18	10.2	73
109	Interleukin-21-Producing CD4(+) T Cells Promote Type 2 Immunity to House Dust Mites. <i>Immunity</i> , 2015 , 43, 318-30	32.3	107
108	Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. <i>Science</i> , 2015 , 349, 1106-10	33.3	374
107	The immunology of asthma. <i>Nature Immunology</i> , 2015 , 16, 45-56	19.1	986
106	Epithelial Cell Regulation of Immune Responses in the Lung 2015 , 591-603		1
105	Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2015 , 70, 1062-78	9.3	66

104	Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. <i>Nature Communications</i> , 2015 , 6, 6219	17.4	77
103	Innate immune cells to the help. <i>Immunity</i> , 2014 , 40, 313-4	32.3	3
102	The function of FcTreceptors in dendritic cells and macrophages. <i>Nature Reviews Immunology</i> , 2014 , 14, 94-108	36.5	415
101	Allergens and the airway epithelium response: gateway to allergic sensitization. <i>Journal of Allergy and Clinical Immunology</i> , 2014 , 134, 499-507	11.5	203
100	Flow cytometric sexing of spider sperm reveals an equal sperm production ratio in a female-biased species. <i>Biology Letters</i> , 2014 , 10, 20140159	3.6	4
99	A20-deficient mast cells exacerbate inflammatory responses in vivo. <i>PLoS Biology</i> , 2014 , 12, e1001762	9.7	54
98	Dendritic cell and epithelial cell interactions at the origin of murine asthma. <i>Annals of the American Thoracic Society</i> , 2014 , 11 Suppl 5, S236-43	4.7	32
97	Antigen-Presenting Dendritic Cells 2014 , 215-227		1
96	Role of CXCL13 in cigarette smoke-induced lymphoid follicle formation and chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 188, 343-55	10.2	63
95	Asthma and coagulation. New England Journal of Medicine, 2013, 369, 1964-6	59.2	26
94	Innate immune cells in asthma. <i>Trends in Immunology</i> , 2013 , 34, 540-7	14.4	79
93	Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. <i>Journal of Experimental Medicine</i> , 2013 , 210, 1977-92	16.6	698
92	Asthma: the importance of dysregulated barrier immunity. <i>European Journal of Immunology</i> , 2013 , 43, 3125-37	6.1	88
91	The multi-faceted role of allergen exposure to the local airway mucosa. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2013 , 68, 152-60	9.3	34
90	Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. <i>Immunity</i> , 2013 , 38, 322-35	32.3	614
89	Death at the airway epithelium in asthma. <i>Cell Research</i> , 2013 , 23, 588-9	24.7	15
88	Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. <i>Mucosal Immunology</i> , 2013 , 6, 464-73	9.2	187
87	Cytokine targets in airway inflammation. <i>Current Opinion in Pharmacology</i> , 2013 , 13, 351-61	5.1	93

(2011-2013)

86	Short cigarette smoke exposure facilitates sensitisation and asthma development in mice. European Respiratory Journal, 2013 , 41, 1189-99	13.6	35
85	The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-\(\propto PLoS \) ONE, 2013 , 8, e59822	3.7	27
84	Lung Dendritic Cells and Pulmonary Defence Mechanisms to Bacteria 2013, 49-66		1
83	Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2012 , 185, 311-21	10.2	194
82	Tertiary lymphoid organs in infection and autoimmunity. <i>Trends in Immunology</i> , 2012 , 33, 297-305	14.4	241
81	Evidence for local dendritic cell activation in pulmonary sarcoidosis. <i>Respiratory Research</i> , 2012 , 13, 33	7-3	20
80	Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2012 , 67, 1501-10	9.3	27
79	Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy. <i>Clinical and Experimental Allergy</i> , 2012 , 42, 1519-28	4.1	37
78	Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. <i>Annual Review of Immunology</i> , 2012 , 30, 243-70	34.7	234
77	LBithlium pulmonaire contrle la sensibilisation allergique initiè par les cellules dendritiques. Revue Francaise Drallergologie, 2012, 52, 457-461	0.2	
76	Engineered 3D microporous gelatin scaffolds to study cell migration. <i>Chemical Communications</i> , 2012 , 48, 3512-4	5.8	17
75	Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. <i>ACS Nano</i> , 2012 , 6, 2136-49	16.7	113
74	The airway epithelium in asthma. <i>Nature Medicine</i> , 2012 , 18, 684-92	50.5	608
73	Interleukin-1Icontrols allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. <i>Journal of Experimental Medicine</i> , 2012 , 209, 1505-17	16.6	306
72	Crosstalk between Innate and Adaptive Cells on Allergic Process. <i>Journal of Allergy</i> , 2012 , 2012, 72056	8	
71	Cellular networks controlling Th2 polarization in allergy and immunity. <i>F1000 Biology Reports</i> , 2012 , 4, 6		45
70	Utilisation des rcepteurs de limmunit inne par les allergües. <i>Revue Francaise Drallergologie</i> , 2011 , 51, 130-133	0.2	1
69	Lung dendritic cell-epithelial cell crosstalk in Th2 responses to allergens. <i>Current Opinion in Immunology</i> , 2011 , 23, 772-7	7.8	27

68	Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2011 , 66, 579-87	9.3	110
67	Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2011 , 66, 396-403	9.3	122
66	MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2011 , 66, 596-604	9.3	115
65	The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function. <i>Clinical and Experimental Allergy</i> , 2011 , 41, 1609-21	4.1	62
64	TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. <i>Respiratory Research</i> , 2011 , 12, 125	7.3	60
63	Anti-inflammatory actions of phosphatidylinositol. <i>European Journal of Immunology</i> , 2011 , 41, 1047-57	6.1	22
62	An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. <i>Immunity</i> , 2011 , 34, 527-40	32.3	276
61	The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. <i>Immunity</i> , 2011 , 35, 82-96	32.3	197
60	C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2011 , 184, 116-23	10.2	147
59	Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. <i>Journal of Leukocyte Biology</i> , 2011 , 90, 1177-90	6.5	36
58	The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. <i>Lancet, The</i> , 2010 , 376, 835-43	40	194
57	Inflammatory dendritic cellsnot basophilsare necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. <i>Journal of Experimental Medicine</i> , 2010 , 207, 2097-111	16.6	468
56	Alarming dendritic cells for allergic sensitization. Allergology International, 2010, 59, 95-103	4.4	36
55	Vegf regulates embryonic erythroid development through Gata1 modulation. <i>Blood</i> , 2010 , 116, 2141-5	12.2	20
54	Origin and functional specializations of DC subsets in the lung. <i>European Journal of Immunology</i> , 2010 , 40, 2112-8	6.1	54
53	Invariant natural killer T cells are natural regulators of murine spondylarthritis. <i>Arthritis and Rheumatism</i> , 2010 , 62, 988-99		39
52	Studying the function of dendritic cells in mouse models of asthma. <i>Methods in Molecular Biology</i> , 2010 , 595, 331-49	1.4	4
51	An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. <i>Journal of Immunology</i> , 2009 , 183, 1074-82	5.3	132

(2007-2009)

50	The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. <i>Journal of Experimental Medicine</i> , 2009 , 206, 2823-35	16.6	26
49	A novel method for isolating dendritic cells from human bronchoalveolar lavage fluid. <i>Journal of Immunological Methods</i> , 2009 , 351, 13-23	2.5	12
48	Biology of lung dendritic cells at the origin of asthma. <i>Immunity</i> , 2009 , 31, 412-24	32.3	2 90
47	House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. <i>Nature Medicine</i> , 2009 , 15, 410-6	50.5	835
46	Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2009 , 64, 995-1002	9.3	112
45	Mechanism of action of clinically approved adjuvants. Current Opinion in Immunology, 2009, 21, 23-9	7.8	271
44	Cholera toxin B suppresses allergic inflammation through induction of secretory IgA. <i>Mucosal Immunology</i> , 2009 , 2, 331-9	9.2	89
43	Selective control of SIRP-alpha-positive airway dendritic cell trafficking through CD47 is critical for the development of T(H)2-mediated allergic inflammation. <i>Journal of Allergy and Clinical Immunology</i> , 2009 , 124, 1333-42.e1	11.5	70
42	Sensitization by intratracheally injected dendritic cells is independent of antigen presentation by host antigen-presenting cells. <i>Journal of Leukocyte Biology</i> , 2009 , 85, 64-70	6.5	14
41	Function of Dendritic Cell Subsets in Allergic Disease 2009 , 209-230		
40	Lung dendritic cells: targets for therapy in allergic disease. <i>Handbook of Experimental Pharmacology</i> , 2009 , 99-114	3.2	10
39	Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. <i>Nature Reviews Immunology</i> , 2008 , 8, 193-204	36.5	497
38	Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. <i>Journal of Experimental Medicine</i> , 2008 , 205, 869-82	16.6	722
37	Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. <i>Journal of Immunology</i> , 2008 , 181, 3755-9	5.3	481
36	Lung dendritic cells: targets for therapy in allergic disease. <i>Chemical Immunology and Allergy</i> , 2008 , 94, 189-200		11
35	Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection. <i>Journal of Allergy and Clinical Immunology</i> , 2007 , 120, 932-40	11.5	134
34	Lung dendritic cell migration. Advances in Immunology, 2007, 93, 265-78	5.6	52
33	Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic		

32	Gata1 regulates dendritic-cell development and survival. <i>Blood</i> , 2007 , 110, 1933-41	2.2	48
31	Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. <i>Journal of Experimental Medicine</i> , 2007 , 204, 357-67	16.6	158
30	Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function. <i>Journal of Clinical Investigation</i> , 2007 , 117, 464-72	15.9	98
29	Mesothelioma environment comprises cytokines and T-regulatory cells that suppress immune responses. <i>European Respiratory Journal</i> , 2006 , 27, 1086-95	13.6	129
28	Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. <i>Journal of Allergy and Clinical Immunology</i> , 2006 , 118, 331-6	11.5	112
27	R l e des difffentes populations de cellules dendritiques dans l'asthme allergique. <i>Revue Francaise Dr</i> allergologie Et Drimmunologie Clinique, 2006 , 46, 128-130		
26	Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. <i>Journal of Clinical Investigation</i> , 2006 , 116, 2935-44	15.9	204
25	Dendritic cell subsets and immune regulation in the lung. Seminars in Immunology, 2005, 17, 295-303	10.7	105
24	Direct regulatory immune activity of lactic acid bacteria on Der p 1-pulsed dendritic cells from allergic patients. <i>Journal of Allergy and Clinical Immunology</i> , 2005 , 116, 198-204	11.5	30
23	Activation of the D prostanoid receptor 1 regulates immune and skin allergic responses. <i>Journal of Immunology</i> , 2004 , 172, 3822-9	5.3	76
22	Differential capacity of CD8+ alpha or CD8- alpha dendritic cell subsets to prime for eosinophilic airway inflammation in the T-helper type 2-prone milieu of the lung. <i>Clinical and Experimental Allergy</i> , 2004 , 34, 1834-40	4.1	34
21	Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. <i>Journal of Experimental Medicine</i> , 2004 , 200, 89-98	16.6	660
20	Activation of peroxisome proliferator-activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. <i>American Journal of Pathology</i> , 2004 , 164, 263-71	5.8	151
19	Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. <i>Journal of Immunology</i> , 2003 , 171, 3936-40	5.3	157
18	Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. <i>Journal of Immunology</i> , 2003 , 170, 5295-301	5.3	78
17	Der p 1-pulsed myeloid and plasmacytoid dendritic cells from house dust mite-sensitized allergic patients dysregulate the T cell response. <i>Journal of Leukocyte Biology</i> , 2003 , 73, 91-9	6.5	57
16	The other cells in asthma: dendritic cell and epithelial cell crosstalk. <i>Current Opinion in Pulmonary Medicine</i> , 2003 , 9, 34-41	3	24
15	Taking our breath away: dendritic cells in the pathogenesis of asthma. <i>Nature Reviews Immunology</i> , 2003 , 3, 994-1003	36.5	300

LIST OF PUBLICATIONS

14	Lipopolysaccharide-induced suppression of airway Th2 responses does not require IL-12 production by dendritic cells. <i>Journal of Immunology</i> , 2003 , 171, 3645-54	5.3	88
13	Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22. <i>European Cytokine Network</i> , 2003 , 14, 219-28	3.3	43
12	Myeloid dendritic cells make it to the top. Clinical and Experimental Allergy, 2002, 32, 805-10	4.1	10
11	Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7. <i>Journal of Immunology</i> , 2002 , 169, 1524-34	5.3	97
10	Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. <i>Blood</i> , 2002 , 100, 553-9	2.2	34
9	Involvement of the mannose receptor in the uptake of Der p 1, a major mite allergen, by human dendritic cells. <i>Journal of Allergy and Clinical Immunology</i> , 2002 , 110, 763-70	11.5	63
8	Th2 polarization by Der p 1pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. <i>Blood</i> , 2001 , 98, 1135-41	2.2	148
7	Human endothelial-cell specific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesion molecule-1. <i>Journal of Immunology</i> , 2001 , 167, 3099-106	5.3	206
6	Human dendritic cells in the severe combined immunodeficiency mouse model: their potentiating role in the allergic reaction. <i>Laboratory Investigation</i> , 2000 , 80, 605-14	5.9	23
5	CC chemokines and interleukin-5 in bronchial lavage fluid from patients with status asthmaticus. Potential implication in eosinophil recruitment. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2000 , 162, 586-92	10.2	73
4	Synergistic effect of diesel organic extracts and allergen Der p 1 on the release of chemokines by peripheral blood mononuclear cells from allergic subjects: involvement of the map kinase pathway. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2000 , 23, 247-54	5.7	54
3	Effects of diesel organic extracts on chemokine production by peripheral blood mononuclear cells. Journal of Allergy and Clinical Immunology, 1999 , 103, 1115-24	11.5	45

- 2 Dendritic Cells in Asthma1059-1079
- Novel Anti-Inflammatory Drugs Based on Targeting Lung Dendritic Cells and Airway Epithelial Cells1-14