Anji Reddy Polu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8982364/publications.pdf

Version: 2024-02-01

41 papers

2,013 citations

236612 25 h-index 37 g-index

41 all docs

41 docs citations

41 times ranked 2329 citing authors

#	Article	IF	CITATIONS
1	Recent advances in MoS 2 nanostructured materials for energy and environmental applications – A review. Journal of Solid State Chemistry, 2017, 252, 43-71.	1.4	216
2	Synthesis, optimization and applications of ZnO/polymer nanocomposites. Materials Science and Engineering C, 2019, 98, 1210-1240.	3.8	191
3	Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. International Journal of Hydrogen Energy, 2017, 42, 7212-7219.	3.8	150
4	Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renewable and Sustainable Energy Reviews, 2016, 65, 1098-1117.	8.2	106
5	Effect of TiO 2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO 12 –LiTDI solid polymer electrolyte. Journal of Industrial and Engineering Chemistry, 2016, 37, 347-353.	2.9	100
6	Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2015, 31, 323-329.	2.9	84
7	Fumed SiO ₂ nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. Journal of Applied Polymer Science, 2017, 134, .	1.3	75
8	Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 973-986.	1,1	73
9	Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications. Chinese Journal of Polymer Science (English Edition), 2013, 31, 641-648.	2.0	70
10	Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 11410-11424.	1.1	65
11	A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. Journal of Industrial and Engineering Chemistry, 2016, 37, 67-74.	2.9	64
12	AC impedance and dielectric spectroscopic studies of Mg2 +  ion conducting PVA–PEG blended polymelectrolytes. Bulletin of Materials Science, 2011, 34, 1063-1067.	er 0.8	63
13	Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes. E-Journal of Chemistry, 2011, 8, 347-353.	0.4	62
14	lonic Conductivity and Discharge Characteristic Studies of PVA-Mg(CH ₃ COO) ₂ Solid Polymer Electrolytes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 76-80.	1.8	62
15	Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies. lonics, 2015, 21, 2771-2780.	1.2	62
16	Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics, 2015, 21, 125-132.	1.2	59
17	Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. Journal of Polymer Research, 2017, 24, 1.	1.2	59
18	New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies. Journal of Materials Science: Materials in Electronics, 2015, 26, 8548-8554.	1.1	45

#	Article	IF	CITATIONS
19	The Effects of LiTDI Salt and POSS-PEG (<l>n</l> = 4) Hybrid Nanoparticles on Crystallinity and Ionic Conductivity of PEO Based Solid Polymer Electrolytes. Science of Advanced Materials, 2016, 8, 931-940.	0.1	45
20	Effect of POSS-PEG hybrid nanoparticles on cycling performance of polyether-LiDFOB based solid polymer electrolytes for all solid-state Li-ion battery applications. Journal of Industrial and Engineering Chemistry, 2017, 45, 68-77.	2.9	43
21	Effect Of Al2O3Âceramic Filler On PEG-based Composite PolymerÂelectrolytes For Magnesium Batteries. Advanced Materials Letters, 2013, 4, 543-547.	0.3	41
22	Eeonomer 200F®: A High-Performance Nanofiller for Polymer Reinforcementâ€"Investigation of the Structure, Morphology and Dielectric Properties of Polyvinyl Alcohol/Eeonomer-200F® Nanocomposites for Embedded Capacitor Applications. Journal of Electronic Materials, 2017, 46, 2406-2418.	1.0	35
23	lonic liquid incorporated nanocomposite polymer electrolytes for rechargeable lithium ion battery: A way to achieve improved electrochemical and interfacial properties. Journal of Industrial and Engineering Chemistry, 2016, 40, 168-176.	2.9	34
24	Preparation and characterization of PEG–Mg(CH3COO)2–CeO2 composite polymer electrolytes for battery application. Bulletin of Materials Science, 2014, 37, 309-314.	0.8	28
25	A comprehensive study of chalcogenide quantum dot sensitized solar cells with a new solar cell exceeding 1 V output. Renewable and Sustainable Energy Reviews, 2015, 52, 1083-1092.	8.2	27
26	Conductivity, XRD, and FTIR Studies of New Mg2+-ion-conducting Solid Polymer Electrolytes: [PEG: Mg(CH3COO)2]. Journal of the Korean Physical Society, 2011, 59, 114-118.	0.3	27
27	Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Ionics, 2014, 20, 675-679.	1.2	26
28	Effect of ceramic fillers on polyethylene glycol-based solid polymer electrolytes for solid-state magnesium batteries. High Performance Polymers, 2014, 26, 628-631.	0.8	18
29	Mg ² ⁺ -ion conducting poly(ethylene) Tj ETQq1 1 0.784314 rgBT Materials Express, 2014, 4, 79-84.		10 Tf 50 34 15
30	Effect of Organic–Inorganic Hybrid Nanoparticles (POSS–PEG(<i>n</i> = 4)) on Thermal, Mechanical, and Electrical Properties of PEOâ€Based Solid Polymer Electrolytes. Advances in Polymer Technology, 2017, 36, 145-151.	0.8	15
31	Effect of TiO[sub 2] ceramic filler on PEG-based composite polymer electrolytes for magnesium batteries. AIP Conference Proceedings, 2013, , .	0.3	14
32	Ionic Conductivity And Electrochemical Cell Studies Of New Mg2+Âion Conducting PVA/PEG Based Polymer Blend ElectrolytesÂ. Advanced Materials Letters, 2012, 3, 406-409.	0.3	13
33	Ion-Conducting Polymer Electrolyte Based on Poly (Ethylene Glycol) Complexed with Mg(CH ₃ COO) _{2^{â€"}} /sub>Application as an Electrochemical Cell. E-Journal of Chemistry, 2012, 9, 869-874.	0.4	10
34	Structural, thermal, and electrochemical studies of biodegradable gel polymer electrolyte for electric double layer capacitor. High Performance Polymers, 2022, 34, 673-682.	0.8	4
35	Electrical performance of soft polymer ionic membranes with mono and multi polymer systems. Karbala International Journal of Modern Science, 2015, 1, 194-199.	0.5	3
36	Improved ion dissociation and amorphous region of PEO based solid polymer electrolyte by incorporating tetracyanoethylene. Materials Today: Proceedings, 2020, , .	0.9	3

#	Article	lF	CITATIONS
37	AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films. , 2012, , .		2
38	A Novel Nanocomposite Polymer Electrolyte for Application in Solid State Lithium Ion Battery. , 2018, , .		2
39	Effect of Mixed Glass Former on lonic Conductivity of Silver Boro Tungstate glass system x[0.75Agl:0.25AgCl]: (1-x) [Ag ₂ O-{B ₂ O ₃ :WO ₃ }]. Journal of Physics: Conference Series, 2012, 365, 012034.	0.3	1
40	Development of solid polymer electrolytes based on poly (ethylene oxide) complexed with 2-trifluoromethyl-4, 5-dicyanoimidazole lithium salt and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for Li-ion batteries. High Performance Polymers, 0, , 095400832211130.	0.8	1
41	Frequency and Temperature Dependence of Conductivity Studies of New Silver-Calcia-Borate Glass System., 2011,,.		0