Marc J -F Suter

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8982178/marc-j-f-suter-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 4,643 36 98 h-index g-index citations papers 103 5,049 5.23 5.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
98	Biotransformation Capacity of Zebrafish (Danio rerio) Early Life Stages: Functionality of the Mercapturic Acid Pathway. <i>Toxicological Sciences</i> , 2020 , 176, 355-365	4.4	4
97	LC-APCI(-)-MS Determination of 1-Chloro-2,4-dinitrobenzene, a Model Substrate for Glutathione S-Transferases. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 467-472	3.5	5
96	Characterization of the Mercapturic Acid Pathway, an Important Phase II Biotransformation Route, in a Zebrafish Embryo Cell Line. <i>Chemical Research in Toxicology</i> , 2020 , 33, 2863-2871	4	О
95	Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2019 , 142, 488-497	5.7	23
94	Hexachlorobenzene exerts genotoxic effects in a humpback whale cell line under stable exposure conditions <i>RSC Advances</i> , 2019 , 9, 39447-39457	3.7	8
93	An integrative approach combining passive sampling, bioassays, and effect-directed analysis to assess the impact of wastewater effluent. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2079-2088	3.8	18
92	Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio). <i>Toxicological Sciences</i> , 2018 , 162, 702-712	4.4	22
91	Conference Report. <i>Chimia</i> , 2018 , 72, 434-435	1.3	
90	Proteome evolution under non-substitutable resource limitation. <i>Nature Communications</i> , 2018 , 9, 4650	17.4	3
89	Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. <i>Journal of Nanobiotechnology</i> , 2017 , 15, 16	9.4	74
88	European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. <i>Science of the Total Environment</i> , 2017 , 601-602, 1849	- 1 868	106
87	Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 138, 16-24	7	14
86	Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. <i>Science of the Total Environment</i> , 2017 , 581-582, 350-358	10.2	42
85	Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. <i>Aquatic Toxicology</i> , 2017 , 191, 164-174	5.1	23
84	Mass Spectrometry in Environmental Chemistry and Toxicology. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2017 , 159-176	0.1	
83	Multimode Separation for Metabolomics and Complex Environmental Samples. <i>Chimia</i> , 2017 , 71, 242	1.3	
82	Silver nanoparticleprotein interactions in intact rainbow trout gill cells. <i>Environmental Science:</i> Nano, 2016 , 3, 1174-1185	7.1	35

(2013-2016)

81	Molecular phenotyping of maternally mediated parallel adaptive divergence within Rana arvalis and Rana temporaria. <i>Molecular Ecology</i> , 2016 , 25, 4564-79	5.7	6
80	Multimode gradient high performance liquid chromatography mass spectrometry method applicable to metabolomics and environmental monitoring. <i>Journal of Chromatography A</i> , 2016 , 1456, 145-51	4.5	10
79	LC-MS/MS determination of tralopyril in water samples. <i>Chemosphere</i> , 2016 , 145, 445-9	8.4	17
78	Tralopyril bioconcentration and effects on the gill proteome of the Mediterranean mussel Mytilus galloprovincialis. <i>Aquatic Toxicology</i> , 2016 , 177, 198-210	5.1	17
77	Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns. <i>Aquatic Toxicology</i> , 2015 , 159, 1-12	5.1	17
76	Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. <i>Nanotoxicology</i> , 2015 , 9, 81-91	5.3	42
75	Evolution of egg coats: linking molecular biology and ecology. <i>Molecular Ecology</i> , 2015 , 24, 4052-73	5.7	33
74	Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis. <i>Oecologia</i> , 2015 , 179, 617-28	2.9	10
73	Investigation of small-scale processes in the rhizosphere of Lupinus albus using micro push-pull tests. <i>Plant and Soil</i> , 2014 , 378, 309-324	4.2	4
7 ²	Phenotypic plasticity influences the eco-evolutionary dynamics of a predatorprey system. <i>Ecology</i> , 2014 , 95, 3080-3092	4.6	27
71	Transient exposure to environmental estrogen affects embryonic development of brown trout (Salmo trutta fario). <i>Aquatic Toxicology</i> , 2014 , 157, 141-9	5.1	10
70	Endocrine disrupting compounds affecting corticosteroid signaling pathways in Czech and Swiss waters: potential impact on fish. <i>Environmental Science & Environmental Science</i>	10.3	61
69	Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3490-5	11.5	121
68	Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrates. <i>Ecotoxicology</i> , 2014 , 23, 1336-44	2.9	22
67	LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 7653-65	4.4	42
66	Mass spectrometry in environmental toxicology. <i>Chimia</i> , 2014 , 68, 140-5	1.3	5
65	Mass Spectrometric Target Analysis and Proteomics in Environmental Toxicology. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2014 , 149-167	0.1	
64	Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. General and Comparative Endocrinology, 2013, 193, 210-20	3	27

63	Degradation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1 proceeds via an aldehyde intermediate. <i>Journal of Bacteriology</i> , 2013 , 195, 585-95	3.5	32
62	Linking proteome responses with physiological and biochemical effects in herbicide-exposed Chlamydomonas reinhardtii. <i>Journal of Proteomics</i> , 2012 , 75, 5370-85	3.9	28
61	Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii. <i>Aquatic Toxicology</i> , 2012 , 110-111, 214-24	5.1	56
60	Characterization of lead-phytochelatin complexes by nano-electrospray ionization mass spectrometry. <i>Frontiers in Microbiology</i> , 2012 , 3, 41	5.7	9
59	Proteomics for the Analysis of Environmental Stress Responses in Prokaryotes 2011 , 603-625		1
58	Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). <i>Fish Physiology and Biochemistry</i> , 2011 , 37, 619-47	2.7	52
57	The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis. <i>Environmental Science and Pollution Research</i> , 2011 , 18, 446-60	5.1	54
56	Endocrine disrupting chemicals-Linking internal exposure to vitellogenin levels and ovotestis in Abramis brama from Dutch surface waters. <i>Environmental Toxicology and Pharmacology</i> , 2010 , 30, 209-7	23 ^{.8}	11
55	Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. <i>Environmental Science & Environmental & Environmental</i>	10.3	201
54	Chemical and biological characterization of estrogenicity in effluents from WWTPs in Ria de Aveiro (NW Portugal). <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 58, 1-8	3.2	21
53	Eine Weight-of-Evidence-Studie zur Bewertung der Sedimentbelastung und des Fischr\u00edkgangs in der Oberen Donau. <i>Environmental Sciences Europe</i> , 2009 , 21, 260-263		5
52	On the acquisition of +1 charge states during high-throughput proteomics: Implications on reproducibility, number and confidence of protein identifications. <i>Journal of Proteomics</i> , 2009 , 72, 761-	7 ð .9	9
51	Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses. <i>Environmental Pollution</i> , 2009 , 157, 2716-21	9.3	55
50	Internal exposure of whitefish (Coregonus lavaretus) to estrogens. <i>Aquatic Toxicology</i> , 2009 , 93, 158-65	5.1	13
49	Sensitivity of brown trout reproduction to long-term estrogenic exposure. <i>Aquatic Toxicology</i> , 2008 , 90, 65-72	5.1	13
48	Water temperature and concomitant waterborne ethinylestradiol exposure affects the vitellogenin expression in juvenile brown trout (Salmo trutta). <i>Aquatic Toxicology</i> , 2008 , 90, 188-96	5.1	49
47	Estrogenic Endocrine Disruption in Switzerland: Assessment of Fish Exposure and Effects. <i>Chimia</i> , 2008 , 62, 376-382	1.3	20
46	Gonadal Malformations in Whitefish from Lake Thun: Defining the Case and Evaluating the Role of EDCs. <i>Chimia</i> , 2008 , 62, 383-388	1.3	15

45	Estrogens in Swiss Rivers and Effluents Sampling Matters. Chimia, 2008, 62, 389-394	1.3	12
44	Analysis of environmental stress response on the proteome level. <i>Mass Spectrometry Reviews</i> , 2008 , 27, 556-74	11	40
43	Analytical chemistry and ecotoxicologytasks, needs and trends. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2007 , 70, 724-6	3.2	11
42	Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. <i>Journal of Bacteriology</i> , 2007 , 189, 7165-73	3.5	42
41	Proteomics for the analysis of environmental stress responses in organisms. <i>Environmental Science & Environmental Science</i>	10.3	70
40	Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1. <i>Archives of Microbiology</i> , 2006 , 185, 192-201	3	32
39	Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 5095-101	10.3	78
38	Effect of cadmium on the interaction of 17beta-estradiol with the rainbow trout estrogen receptor. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2006 , 40, 1358-63	10.3	17
37	Estrogenicity patterns in the Swiss midland river Lfzelmurg in relation to treated domestic sewage effluent discharges and hydrology. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2413-22	3.8	38
36	Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish. <i>Environmental Science & Description</i> (2005), 39, 8191-8	10.3	105
35	Identification of the estrogen receptor Cd-binding sites by chemical modification. <i>Analyst, The</i> , 2005 , 130, 1087-97	5	24
34	Where have all the fish gone? The reasons why fish catches in Swiss rivers are declining. <i>Environmental Science & Environmental Science & Environment</i>	10.3	81
33	Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. <i>Water Research</i> , 2005 , 39, 47-58	12.5	215
32	Determination of [S,S\frac{9}-ethylenediamine disuccinic acid (EDDS) by high performance liquid chromatography after derivatization with FMOC. <i>Journal of Chromatography A</i> , 2005 , 1077, 37-43	4.5	26
31	Characterization of the estrogenicity of Swiss midland rivers using a recombinant yeast bioassay and plasma vitellogenin concentrations in feral male brown trout. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2226-33	3.8	70
30	Effect of corn root exudates on the degradation of atrazine and its chlorinated metabolites in soils. Journal of Environmental Quality, 2005 , 34, 2187-96	3.4	16
29	Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 857-64	3.8	134
28	Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 688-96	4.4	190

27	On the conformation-dependent neutralization theory and charging of individual proteins and their non-covalent complexes in the gas phase. <i>Journal of Mass Spectrometry</i> , 2004 , 39, 93-7	2.2	48
26	Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. <i>Analytical Chemistry</i> , 2004 , 76, 4756-64	7.8	258
25	Desulfonation and degradation of the disulfodiphenylethercarboxylates from linear alkyldiphenyletherdisulfonate surfactants. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 938-44	4.8	24
24	Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage Sludges, and Surface Waters. <i>Chimia</i> , 2003 , 57, 485-491	1.3	228
23	Sorption and mass fluxes of sulfonated naphthalene formaldehyde condensates in aquifers. <i>Journal of Contaminant Hydrology</i> , 2003 , 67, 1-12	3.9	6
22	Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland. <i>Environmental Science & Environmental Science & E</i>	10.3	361
21	TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. <i>Archives of Microbiology</i> , 2002 , 178, 13-25	3	9
20	Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2002 , 952, 111-20	4.5	298
19	Leaching and primary biodegradation of sulfonated naphthalenes and their formaldehyde condensates from concrete superplasticizers in groundwater affected by tunnel construction. <i>Environmental Science & Environmental Scien</i>	10.3	24
18	Rapid determination of sulfonated naphthalenes and their formaldehyde condensates in aqueous environmental samples using synchronous excitation fluorimetry. <i>Analyst, The</i> , 2001 , 126, 2072-7	5	15
17	MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation. <i>Environmental Science & amp; Technology</i> , 2001 , 35, 4252-9	10.3	131
16	Behavior of aliphatic alcohol polyethoxylates and their metabolites under standardized aerobic biodegradation conditions. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 549-554	3.8	36
15	Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus. <i>Archives of Microbiology</i> , 2000 , 173, 206-12	3	18
14	Benzene- and naphthalenesulfonates in leachates and plumes of landfills. Water Research, 2000, 34, 200	5 <u>9-2</u> 97	'9 ₅₁
13	p-Toluenesulfonate in Landfill Leachates: Leachability from Foundry Sands and Aerobic Biodegradation. <i>Environmental Science & Environmental &</i>	10.3	11
12	Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. <i>Biodegradation</i> , 1999 , 10, 271	- 8 .1	51
11	Selective determination of aromatic sulfonates in landfill leachates and groundwater using microbore liquid chromatography coupled with mass spectrometry. <i>Analytical Chemistry</i> , 1999 , 71, 897-	9708	49
10	Changes in the Enantiomeric Ratio of (R)- to (S)-Mecoprop Indicate in Situ Biodegradation of This Chiral Herbicide in a Polluted Aquifer. <i>Environmental Science & Environmental Science & Environment</i>	10.3	81

LIST OF PUBLICATIONS

9	of (R)- and (S)-mecoprop by Sphingomonas herbicidovorans MH. <i>Journal of Bacteriology</i> , 1997 , 179, 6674 ² 9 ⁵	76
8	The Determination of Polar Compounds in the Aquatic Environment 1997 , 559-573	
7	Determination of the quaternary ammonium surfactant ditallowdimethylammonium in digested sludges and marine sediments by supercritical fluid extraction and liquid chromatography with postcolumn ion-pair formation. <i>Analytical Chemistry</i> , 1996 , 68, 921-9	70
6	Differentiation of Linear and Branched Alkylbenzenesulfonates by Gas Chromatography/Tandem Mass Spectrometry. <i>Journal of Mass Spectrometry</i> , 1996 , 31, 357-362	11
5	Continuous-flow fast atom bombardment: recent advances and applications. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1992 , 118-119, 449-476	28
4	An integral probe for capillary zone electrophoresis/continuous-flow fast atom bombardment mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 198-206	23
3	Continuous-flow fast atom bombardment: recent advances and applications 1992, 449-476	
2	Recent advances in liquid chromatography-mass spectrometry and capillary zone electrophoresis-mass spectrometry for protein analysis. <i>Journal of Chromatography A</i> , 1991 , 553, 101-16 ⁴⁻⁵	34

Formation of a new C?C bond in a sulfonenamide upon SO2 elimination induced by electron impact ionization. *International Journal of Mass Spectrometry and Ion Processes*, **1988**, 86, 201-208