
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8982161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prenatal exposure to neurotoxic metals and micronutrients and neurodevelopmental outcomes in early school age children from Poland. Environmental Research, 2022, 204, 112049.	7.5	21
2	Who is likely to vacillate in their COVID-19 vaccination decision? Free-riding intention and post-positive reluctance. Preventive Medicine, 2022, 154, 106885.	3.4	25
3	Critical Role of Maternal Selenium Nutrition in Neurodevelopment: Effects on Offspring Behavior and Neuroinflammatory Profile. Nutrients, 2022, 14, 1850.	4.1	12
4	Low-level lead exposure during development differentially affects neurobehavioral responses in male and female mouse offspring: A longitudinal study. NeuroToxicology, 2022, 91, 188-199.	3.0	7
5	Determinants of the Essential Elements and Vitamins Intake and Status during Pregnancy: A Descriptive Study in Polish Mother and Child Cohort. Nutrients, 2021, 13, 949.	4.1	9
6	Altered responsiveness to pups in virgin female mice of the BTBR strain: Insights from pattern of c-Fos expression in brain regions involved in maternal behavior. Behavioural Brain Research, 2021, 410, 113365.	2.2	3
7	Pregnancy exposome and child psychomotor development in three European birth cohorts. Environmental Research, 2020, 181, 108856.	7.5	18
8	Urinary metabolites of organophosphate and pyrethroid pesticides in children from an Italian cohort (PHIME, Trieste). Environmental Research, 2019, 176, 108508.	7.5	24
9	Sociodemographic, Lifestyle, Environmental and Pregnancy-Related Determinants of Dietary Patterns during Pregnancy. International Journal of Environmental Research and Public Health, 2019, 16, 754.	2.6	35
10	Early Behavioral Alterations and Increased Expression of Endogenous Retroviruses Are Inherited Across Generations in Mice Prenatally Exposed to Valproic Acid. Molecular Neurobiology, 2019, 56, 3736-3750.	4.0	27
11	Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology, 2019, 159, 107477.	4.1	68
12	Sex-Dependent Impact of Low-Level Lead Exposure during Prenatal Period on Child Psychomotor Functions. International Journal of Environmental Research and Public Health, 2018, 15, 2263.	2.6	36
13	Regenerative medicine in Huntington's disease: Strengths and weaknesses of preclinical studies. Neuroscience and Biobehavioral Reviews, 2017, 77, 32-47.	6.1	10
14	Maternal stress during pregnancy and neurodevelopmental outcomes of children during the first 2 years of life. Journal of Paediatrics and Child Health, 2017, 53, 263-270.	0.8	43
15	Human biomonitoring data analysis for metals in an Italian adolescents cohort: An exposome approach. Environmental Research, 2017, 159, 344-354.	7.5	32
16	Micronutrients during pregnancy and child psychomotor development: Opposite effects of Zinc and Selenium. Environmental Research, 2017, 158, 583-589.	7.5	38
17	Environmental Tobacco Smoke Exposure during Pregnancy and Child Neurodevelopment. International Journal of Environmental Research and Public Health, 2017, 14, 796.	2.6	45
18	Reduced miR-659-3p Levels Correlate with Progranulin Increase in Hypoxic Conditions: Implications for Frontotemporal Dementia. Frontiers in Molecular Neuroscience, 2016, 9, 31.	2.9	25

#	Article	IF	CITATIONS
19	Aberrant self-grooming as early marker of motor dysfunction in a rat model of Huntington's disease. Behavioural Brain Research, 2016, 313, 53-57.	2.2	15
20	Selenium status during pregnancy and child psychomotor development—Polish Mother and Child Cohort study. Pediatric Research, 2016, 79, 863-869.	2.3	52
21	Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring – a mouse study. Environmental Health, 2015, 14, 32.	4.0	44
22	Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. Toxics, 2015, 3, 89-129.	3.7	65
23	Early-Life Toxic Insults and Onset of Sporadic Neurodegenerative Diseases—an Overview of Experimental Studies. Current Topics in Behavioral Neurosciences, 2015, 29, 231-264.	1.7	39
24	Prenatal Exposure to a Common Organophosphate Insecticide Delays Motor Development in a Mouse Model of Idiopathic Autism. PLoS ONE, 2015, 10, e0121663.	2.5	48
25	Sex-dimorphic effects of gestational exposure to the organophosphate insecticide chlorpyrifos on social investigation in mice. Neurotoxicology and Teratology, 2014, 46, 32-39.	2.4	27
26	Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMTH1. Aging Cell, 2013, 12, 695-705.	6.7	35
27	Transplacental Exposure to AZT Induces Adverse Neurochemical and Behavioral Effects in a Mouse Model: Protection by L-Acetylcarnitine. PLoS ONE, 2013, 8, e55753.	2.5	12
28	Sex dimorphic behaviors as markers of neuroendocrine disruption by environmental chemicals: The case of chlorpyrifos. NeuroToxicology, 2012, 33, 1420-1426.	3.0	56
29	Endocrine Disrupters: A Review of Some Sources, Effects, and Mechanisms of Actions on Behaviour and Neuroendocrine Systems. Journal of Neuroendocrinology, 2012, 24, 144-159.	2.6	327
30	Complex behavioral and synaptic effects of dietary branched chain amino acids in a mouse model of amyotrophic lateral sclerosis. Molecular Nutrition and Food Research, 2011, 55, 541-552.	3.3	7
31	Foetal and neonatal exposure to chlorpyrifos: Biochemical and metabolic alterations in the mouse liver at different developmental stages. Toxicology, 2011, 280, 98-108.	4.2	22
32	Does Age Matter? Behavioral and Neuro-anatomical Effects of Neonatal and Adult Basal Forebrain Cholinergic Lesions. Journal of Alzheimer's Disease, 2010, 20, 207-227.	2.6	13
33	Gestational exposure to the organophosphate chlorpyrifos alters social–emotional behaviour and impairs responsiveness to the serotonin transporter inhibitor fluvoxamine in mice. Psychopharmacology, 2010, 208, 99-107.	3.1	52
34	Early behavioural markers of disease in P301S tau transgenic mice. Behavioural Brain Research, 2010, 208, 250-257.	2.2	76
35	The application of Russell and Burch 3R principle in rodent models of neurodegenerative disease: The case of Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2009, 33, 18-32.	6.1	42
36	Effects of the food contaminant semicarbazide following oral administration in juvenile Sprague–Dawley rats. Food and Chemical Toxicology, 2009, 47, 472-479.	3.6	50

#	Article	IF	CITATIONS
37	Early social enrichment affects responsiveness to different social cues in female mice. Behavioural Brain Research, 2009, 196, 304-309.	2.2	21
38	Developmental Exposure to Chlorpyrifos Induces Alterations in Thyroid and Thyroid Hormone Levels Without Other Toxicity Signs in Cd1 Mice. Toxicological Sciences, 2009, 108, 311-319.	3.1	108
39	Long-Term Effects on Hypothalamic Neuropeptides after Developmental Exposure to Chlorpyrifos in Mice. Environmental Health Perspectives, 2009, 117, 112-116.	6.0	54
40	A Retrospective Performance Assessment of the Developmental Neurotoxicity Study in Support of OECD Test Guideline 426. Environmental Health Perspectives, 2009, 117, 17-25.	6.0	147
41	Neonatal exposure to chlorpyrifos affects maternal responses and maternal aggression of female mice in adulthood. Neurotoxicology and Teratology, 2008, 30, 468-474.	2.4	53
42	B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-β deposition in mice. Molecular and Cellular Neurosciences, 2008, 37, 731-746.	2.2	183
43	Adenosine A2A receptor blockade before striatal excitotoxic lesions prevents long term behavioural disturbances in the quinolinic rat model of Huntington's disease. Behavioural Brain Research, 2007, 176, 216-221.	2.2	27
44	Neonatal basal forebrain cholinergic hypofunction affects ultrasonic vocalizations and fear conditioning responses in preweaning rats. Behavioural Brain Research, 2007, 183, 111-117.	2.2	23
45	Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington's disease versus wild-type mice. Neuroscience Letters, 2007, 417, 78-83.	2.1	39
46	Workgroup Report: IncorporatingIn VitroAlternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies. Environmental Health Perspectives, 2007, 115, 924-931.	6.0	145
47	Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington's disease mice. Neurobiology of Disease, 2007, 28, 197-205.	4.4	67
48	C-section birth per se or followed by acute global asphyxia altered emotional behaviour in neonate and adult rats. Behavioural Brain Research, 2006, 168, 56-63.	2.2	32
49	The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology, 2006, 51, 1004-1012.	4.1	69
50	Efficient testing strategies for evaluation of xenobiotics with neuroendocrine activity. Reproductive Toxicology, 2006, 22, 164-174.	2.9	20
51	A social recognition test for female mice reveals behavioral effects of developmental chlorpyrifos exposure. Neurotoxicology and Teratology, 2006, 28, 466-471.	2.4	50
52	Developmental Neurotoxicity of Organophosphorous Pesticides: Fetal and Neonatal Exposure to Chlorpyrifos Alters Sex-Specific Behaviors at Adulthood in Mice. Toxicological Sciences, 2006, 93, 105-113.	3.1	158
53	Neurobehavioral effects of prenatal exposure to AZT: a preliminary investigation with the D1 receptor agonist SKF 38393 in mice. Neurotoxicology and Teratology, 2005, 27, 169-173.	2.4	10
54	Basal forebrain cholinergic lesions in 7-day-old rats alter ultrasound vocalisations and homing behaviour. Behavioural Brain Research, 2005, 161, 169-172.	2.2	19

#	Article	IF	CITATIONS
55	Increased Brain Levels of F2-Isoprostane Are an Early Marker of Behavioral Sequels in a Rat Model of Global Perinatal Asphyxia. Pediatric Research, 2004, 55, 85-92.	2.3	29
56	Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington's disease. Behavioural Brain Research, 2004, 152, 375-383.	2.2	29
57	Acute global anoxia during C-section birth affects dopamine-mediated behavioural responses and reactivity to stress. Behavioural Brain Research, 2004, 154, 155-164.	2.2	28
58	Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicology and Applied Pharmacology, 2003, 191, 189-201.	2.8	90
59	NGF induces appearance of adult-like response to spatial novelty in 18-day male mice. Behavioural Brain Research, 2002, 136, 289-298.	2.2	11
60	Animal models of anti-HIV drugs exposure during pregnancy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2002, 26, 747-761.	4.8	10
61	Developmental exposure to the antiretroviral drug zidovudine increases brain levels of brain-derived neurotrophic factor in mice. Neuroscience Letters, 2002, 333, 111-114.	2.1	12
62	Long-term effects of developmental exposure to zidovudine on exploratory behavior and novelty discrimination in CD-1 mice. Neurotoxicology and Teratology, 2002, 24, 529-540.	2.4	10
63	Delayed Developmental Effects Following Prenatal Exposure to Drugs. Current Pharmaceutical Design, 2001, 7, 859-880.	1.9	27
64	Prenatal exposure to anti-HIV drugs. Neurotoxicology and Teratology, 2000, 22, 369-379.	2.4	12
65	Effects of prenatal AZT+3TC treatment on open field behavior and responsiveness to scopolamine in adult mice. Pharmacology Biochemistry and Behavior, 2000, 67, 511-517.	2.9	8
66	Prolonged perinatal exposure to AZT affects aggressive behaviour of adult CD-1 mice. Psychopharmacology, 2000, 150, 404-411.	3.1	16
67	Serum NGF levels in children and adolescents with either Williams syndrome or Down syndrome. Developmental Medicine and Child Neurology, 2000, 42, 746-750.	2.1	13
68	Long-term effects of prenatal 3'-azido-3'-deoxythymidine (AZT) exposure on intermale aggressive behaviour of mice. Psychopharmacology, 1999, 145, 317-323.	3.1	12
69	Effects of Prenatal AZT on Mouse Neurobehavioral Development and Passive Avoidance Learning. Neurotoxicology and Teratology, 1999, 21, 29-40.	2.4	33
70	Neurobehavioral Effects of Prenatal Lamivudine (3TC) Exposure in Preweaning Mice. Neurotoxicology and Teratology, 1999, 21, 365-373.	2.4	15
71	Neonatal 192 IgG-saporin lesions of basal forebrain cholinergic neurons selectively impair response to spatial novelty in adult rats Behavioral Neuroscience, 1999, 113, 1204-1215.	1.2	21
72	Scopolamine impairs memory recall in Octopus vulgaris. Neuroscience Letters, 1998, 253, 87-90.	2.1	23

#	Article	IF	CITATIONS
73	Sexually dimorphic effects of anti-NGF treatment in neonatal rats. Developmental Brain Research, 1997, 101, 273-276.	1.7	16
74	Neonatal Cocaine Alters Behavioural Responsiveness to Scopolamine and Cholinergic Development in Mice. Pharmacology Biochemistry and Behavior, 1997, 56, 557-563.	2.9	10
75	Systemic administration of anti-NGF antibodies to neonatal mice impairs 24-h retention of an inhibitory avoidance task while increasing ChAT immunoreactivity in the medial septum. Behavioural Brain Research, 1996, 78, 81-91.	2.2	23
76	Nerve growth factor affects passive avoidance learning and retention in developing mice. Brain Research Bulletin, 1996, 39, 219-226.	3.0	19
77	Neonatal exposure to anti-nerve growth factor antibodies affects exploratory behavior of developing mice in the hole board. Neurotoxicology and Teratology, 1996, 18, 141-146.	2.4	9
78	Neuronal growth factors, neurotrophins and memory deficiency. Behavioural Brain Research, 1995, 66, 129-132.	2.2	38
79	IGF-I and IGF-I24–41 but not IGF-I57–70 affect somatic and neurobehavioral development of newborn male mice. Brain Research Bulletin, 1994, 35, 367-371.	3.0	16
80	Differential expression of Fos protein in the brain of female mice dependent on pup sensory cues and maternal experience Behavioral Neuroscience, 1994, 108, 113-120.	1.2	34
81	Neonatal exposure to bFGF exerts NGF-like effects on mouse behavioral development. Neurotoxicology and Teratology, 1993, 15, 131-137.	2.4	17
82	Olfactory recognition of infants in laboratory mice: Role of noradrenergic mechanisms. Physiology and Behavior, 1992, 52, 901-907.	2.1	31
83	NGF and cholinergic control of behavior: anticipation and enhancement of scopolamine effects in neonatal mice. Developmental Brain Research, 1991, 61, 237-241.	1.7	27
84	Epidermal growth factor has both growth-promoting and growth-inhibiting effects on physical and neurobehavioral development of neonatal mice. Brain Research, 1989, 477, 1-6.	2.2	39
85	Nerve growth factor influences neurobehavioral development of newborn miceâ ⁻ †. Neurotoxicology and Teratology, 1987, 9, 271-275.	2.4	21
86	Odor-aversion learning and retention span in neonatal mouse pups. Behavioral and Neural Biology, 1986, 46, 348-357.	2.2	29