
Mahesh M Thakkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/898198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of dopamine D2 receptors in the medial shell region of the nucleus accumbens increases Per1 expression to enhance alcohol consumption. Addiction Biology, 2022, 27, e13133.	1.4	2
2	Sleep, sleep homeostasis and arousal disturbances in alcoholism. Brain Research Bulletin, 2022, 182, 30-43.	1.4	7
3	Short-term sleep deprivation immediately after contextual conditioning inhibits BDNF signaling and disrupts memory consolidation in predator odor trauma mice model of PTSD. Brain Research, 2021, 1750, 147155.	1.1	11
4	Rats exposed to chronic alcohol display protracted insomnia and daytime sleepiness-like behavior during alcohol withdrawal✰. Physiology and Behavior, 2021, 228, 113200.	1.0	5
5	Multi-focus Image Fusion for Confocal Microscopy Using U-Net Regression Map. , 2021, 2020, 4317-4323.		4
6	Antisenseâ€Induced Downregulation of Clock Genes in the Shell Region of the Nucleus Accumbens Reduces Binge Drinking in Mice. Alcoholism: Clinical and Experimental Research, 2021, 45, 530-542.	1.4	9
7	Antisenseâ€induced knockdown of cAMP response elementâ€binding protein downregulates <i>Per1</i> gene expression in the shell region of nucleus accumbens resulting in reduced alcohol consumption in mice. Alcoholism: Clinical and Experimental Research, 2021, 45, 1940-1949.	1.4	1
8	Antisenseâ€induced downregulation of major circadian genes modulates the expression of histone deacetylaseâ€2 (HDACâ€2) and CREBâ€binding protein (CBP) in the medial shell region of nucleus accumbens of mice exposed to chronic excessive alcohol consumption. Journal of Neurochemistry, 2021, , .	2.1	2
9	Sleep Loss Immediately After Fear Memory Reactivation Attenuates Fear Memory Reconsolidation. Neuroscience, 2020, 428, 70-75.	1.1	3
10	Orexin gene expression is downregulated in alcohol dependent rats during acute alcohol withdrawal. Neuroscience Letters, 2020, 739, 135347.	1.0	4
11	Chronic alcohol exposure reduces acetylated histones in the sleep-wake regulatory brain regions to cause insomnia during withdrawal. Neuropharmacology, 2020, 180, 108332.	2.0	6
12	Perfect timing: circadian rhythms, sleep, and immunity — an NIH workshop summary. JCI Insight, 2020, 5,	2.3	136
13	0035 Gender Differences In Sleep Homeostasis: Chemogenetic Approach To Examine The Role Of Melanin Concentrating Hormone Sleep, 2019, 42, A13-A15.	0.6	0
14	Alcoholism and Sleep. , 2019, , 159-192.		2
15	Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus. Journal of Pineal Research, 2018, 65, e12498.	3.4	37
16	Severe and protracted sleep disruptions in mouse model of post-traumatic stress disorder. Sleep, 2018, 41, .	0.6	17
17	A single episode of binge alcohol drinking causes sleep disturbance, disrupts sleep homeostasis, and downâ€regulates equilibrative nucleoside transporter 1. Journal of Neurochemistry, 2018, 146, 304-321.	2.1	16

18 Hypersomnia. Missouri Medicine, 2018, 115, 85-91.

MAHESH M THAKKAR

#	Article	IF	CITATIONS
19	Sleep Medicine: Parasomnias. Missouri Medicine, 2018, 115, 169-175.	0.3	5
20	Sleep Medicine: Restless Legs Syndrome. Missouri Medicine, 2018, 115, 380-387.	0.3	4
21	Lesion of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption. Journal of Neurochemistry, 2017, 142, 710-720.	2.1	13
22	Neural Mechanisms Contributing to Dysphagia in Mouse Models. Otolaryngology - Head and Neck Surgery, 2016, 155, 303-306.	1.1	4
23	Nicotine administration in the wakeâ€promoting basal forebrain attenuates sleepâ€promoting effects of alcohol. Journal of Neurochemistry, 2015, 135, 323-331.	2.1	17
24	Alcohol disrupts sleep homeostasis. Alcohol, 2015, 49, 299-310.	0.8	179
25	Neural activation patterns underlying basolateral amygdala influence on intra-accumbens opioid-driven consummatory versus appetitive high-fat feeding behaviors in the rat Behavioral Neuroscience, 2015, 129, 812-821.	0.6	13
26	Orexin, Alcohol and Sleep Homeostasis. , 2015, , 137-164.		1
27	Acute Binge Alcohol Administration Reverses Sleep-Wake Cycle in Sprague Dawley Rats. Alcoholism: Clinical and Experimental Research, 2014, 38, 1941-1946.	1.4	14
28	Nicotine Administration in the Cholinergic Basal Forebrain Increases Alcohol Consumption in <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> Mice. Alcoholism: Clinical and Experimental Research, 2014, 38, 1315-1320.	1.4	23
29	Nicotine Infusion in the Wakeâ€Promoting Basal Forebrain Enhances Alcoholâ€Induced Activation of Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2014, 38, 2590-2596.	1.4	8
30	Role of Adenosine and the Orexinergic Perifornical Hypothalamus in Sleep-Promoting Effects of Ethanol. Sleep, 2014, 37, 525-533.	0.6	39
31	Rapid Tolerance Development to the NREM Sleep Promoting Effect of Alcohol. Sleep, 2014, 37, 821-824.	0.6	24
32	Adenosine and Glutamate Signaling in Neuron–Glial Interactions: Implications in Alcoholism and Sleep Disorders. Alcoholism: Clinical and Experimental Research, 2012, 36, 1117-1125.	1.4	69
33	Histamine in the regulation of wakefulness. Sleep Medicine Reviews, 2011, 15, 65-74.	3.8	178
34	Implication of the Purinergic System in Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2011, 35, 584-594.	1.4	60
35	Effects of Ethanol on Extracellular Levels of Adenosine in the Basal Forebrain: An In Vivo Microdialysis Study in Freely Behaving Rats. Alcoholism: Clinical and Experimental Research, 2010, 34, 813-818.	1.4	53
36	Role of Wakeâ€Promoting Basal Forebrain and Adenosinergic Mechanisms in Sleepâ€Promoting Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 2010, 34, 997-1005.	1.4	52

MAHESH M THAKKAR

#	Article	IF	CITATIONS
37	Role of adenosine and wakeâ€promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence. Journal of Neurochemistry, 2010, 115, 782-794.	2.1	67
38	Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. European Journal of Neuroscience, 2010, 32, 1528-1536.	1.2	44
39	Sleep–wakefulness in alcohol preferring and non-preferring rats following binge alcohol administration. Neuroscience, 2010, 170, 22-27.	1.1	18
40	Characterization of GABAergic neurons in rapidâ€eyeâ€movement sleep controlling regions of the brainstem reticular formation in GAD67–green fluorescent protein knockâ€in mice. European Journal of Neuroscience, 2008, 27, 352-363.	1.2	81
41	Adenosine and the homeostatic control of sleep: Effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep–wakefulness. Neuroscience, 2008, 153, 875-880.	1.1	96
42	Effect of microdialysis perfusion of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol in the perifornical hypothalamus on sleep–wakefulness: Role of Î-subunit containing extrasynaptic GABAA receptors. Neuroscience, 2008, 153, 551-555.	1.1	13
43	PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Molecular Vision, 2008, 14, 1020-7.	1.1	44
44	Nociceptin/orphanin FQ decreases serotonin efflux in the rat brain but in contrast to a κ-opioid has no antagonistic effect on μ-opioid-induced increases in serotonin efflux. Neuroscience, 2007, 147, 106-116.	1.1	25
45	Sleep fragmentation elevates behavioral, electrographic and neurochemical measures of sleepiness. Neuroscience, 2007, 146, 1462-1473.	1.1	103
46	Differential effect of orexins (hypocretins) on serotonin release in the dorsal and median raphe nuclei of freely behaving rats. Neuroscience, 2006, 141, 1101-1105.	1.1	67
47	Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: Intrinsic membrane properties and responses to carbachol and orexins. Neuroscience, 2006, 143, 739-755.	1.1	74
48	Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience, 2006, 23, 2739-2748.	1.2	185
49	REM sleep changes in rats induced by siRNA-mediated orexin knockdown. European Journal of Neuroscience, 2006, 24, 2039-2048.	1.2	67
50	Effects on serotonin of (â^')nicotine and dimethylphenylpiperazinium in the dorsal raphe and nucleus accumbens of freely behaving rats. Neuroscience, 2005, 135, 949-958.	1.1	25
51	Wakefulness-inducing effects of histamine in the basal forebrain of freely moving rats. Behavioural Brain Research, 2004, 152, 271-278.	1.2	48
52	Adenosine and sleep–wake regulation. Progress in Neurobiology, 2004, 73, 379-396.	2.8	515
53	Adenosinergic inhibition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience, 2003, 122, 1107-1113.	1.1	89
54	A ₁ Receptor and Adenosinergic Homeostatic Regulation of Sleep-Wakefulness: Effects of Antisense to the A ₁ Receptor in the Cholinergic Basal Forebrain. Journal of Neuroscience, 2003, 23, 4278-4287.	1.7	163

#	Article	IF	CITATIONS
55	Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep–wakefulness and prolonged wakefulness: An in vivo microdialysis study. Neuroscience, 2002, 113, 663-670.	1.1	87
56	Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Research, 2002, 944, 190-194.	1.1	62
57	Phasic but not tonic REM-selective discharge of periaqueductal gray neurons in freely behaving animals: relevance to postulates of GABAergic inhibition of monoaminergic neurons. Brain Research, 2002, 945, 276-280.	1.1	27
58	The evolution of REM sleep. , 2001, , 197-217.		1
59	Compensatory sleep response to 12 h wakefulness in young and old rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R125-R133.	0.9	70
60	Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behavioural Brain Research, 2000, 115, 183-204.	1.2	335
61	Adenosine as a Biological Signal Mediating Sleepiness following Prolonged Wakefulness. NeuroSignals, 2000, 9, 319-327.	0.5	74
62	Behavioral State Control through Differential Serotonergic Inhibition in the Mesopontine Cholinergic Nuclei: A Simultaneous Unit Recording and Microdialysis Study. Journal of Neuroscience, 1998, 18, 5490-5497.	1.7	191
63	Adenosine: A Mediator of the Sleep-Inducing Effects of Prolonged Wakefulness. Science, 1997, 276, 1265-1268.	6.0	1,120
64	Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience, 1997, 79, 225-235.	1.1	280
65	Effect of rapid eye movement sleep deprivation on 5′-nucleotidase activity in the rat brain. Neuroscience Letters, 1996, 206, 177-180.	1.0	8
66	Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH- DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. Journal of Neuroscience, 1996, 16, 2820-2828.	1.7	258
67	Chronic low-amplitude electrical stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Research, 1996, 723, 223-227.	1.1	161
68	Rapid eye movement sleep deprivation decreases membrane fluidity in the rat brain. Neuroscience Research, 1995, 22, 117-122.	1.0	25
69	Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience, 1993, 55, 677-683.	1.1	54
70	Rapid Eye Movement Sleep-Deprivation-Induced Changes in Glucose Metabolic Enzymes in Rat Brain. Sleep, 1993, , .	0.6	16
71	Effect of REM sleep deprivation on molecular forms of acetylcholinesterase in rats. NeuroReport, 1992, 3, 676-678.	0.6	11
72	Short-term REM sleep deprivation increases acetylcholinesterase activity in the medulla of rats. Neuroscience Letters, 1991, 130, 221-224.	1.0	13

#	Article	IF	CITATIONS
73	Effect of REM sleep deprivation on rat brain acetylcholinesterase. Pharmacology Biochemistry and Behavior, 1991, 39, 211-214.	1.3	33
74	Histamine in the control of sleep–wakefulness. , 0, , 144-178.		2
75	Adenosine and glycine in REM-sleep regulation. , 0, , 256-265.		0