
MarÃ-a Laura Pedano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8981965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon nanotubes for electrochemical biosensing. Talanta, 2007, 74, 291-307.	2.9	513
2	Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochemistry Communications, 2004, 6, 10-16.	2.3	234
3	Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods. Nano Letters, 2010, 10, 1722-1727.	4.5	103
4	Carbon Nanotubes Paste Electrodes. A New Alternative for the Development of Electrochemical Sensors. Electroanalysis, 2007, 19, 823-831.	1.5	87
5	Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine. Sensors and Actuators B: Chemical, 2012, 173, 732-736.	4.0	86
6	Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors. Biosensors and Bioelectronics, 2003, 18, 269-277.	5.3	60
7	Comparative study of the electrochemical behavior and analytical applications of (bio)sensing platforms based on the use of multi-walled carbon nanotubes dispersed in different polymers. Analytica Chimica Acta, 2013, 805, 19-35.	2.6	56
8	Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH. Sensors and Actuators B: Chemical, 2013, 176, 921-926.	4.0	54
9	Periodic Electric Field Enhancement Along Gold Rods with Nanogaps. Angewandte Chemie - International Edition, 2010, 49, 78-82.	7.2	41
10	Electrochemical Biosensors for Sequence‧pecific DNA Detection. Analytical Letters, 2005, 38, 2653-2703.	1.0	37
11	Glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes in dopamine-functionalized polyethylenimine: Characterization and analytical applications for nicotinamide adenine dinucleotide quantification. Electrochimica Acta, 2012, 71, 73-81.	2.6	32
12	Supramolecular architecture based on the self-assembling of multiwall carbon nanotubes dispersed in polyhistidine and glucose oxidase: Characterization and analytical applications for glucose biosensing. Biosensors and Bioelectronics, 2013, 39, 76-81.	5.3	28
13	Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer. Sensors, 2005, 5, 424-447.	2.1	25
14	Alignment Strategies for the Assembly of Nanowires with Submicron Diameters. Small, 2010, 6, 1736-1740.	5.2	25
15	Dispersion of multi-wall carbon nanotubes in polyhistidine: Characterization and analytical applications. Analytica Chimica Acta, 2012, 710, 58-64.	2.6	24
16	Layerâ€by‣ayer Deposition of Chitosan Derivatives and DNA on Gold Surfaces for the Development of Biorecognition Layers. Analytical Letters, 2004, 37, 2235-2250.	1.0	16
17	Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine: Synthesis, Characterization and Analytical Applications for the Development of Electrochemical (Bio)Sensors. Electroanalysis, 2014, 26, 1676-1683.	1.5	14
18	Electrochemical Determination of Cu(II) Using a Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes Dispersed in Polyhistidine. Electroanalysis, 2015, 27, 2164-2170.	1.5	14

#	Article	IF	CITATIONS
19	Electrochemical Sensor for the Quantification of Dopamine Using Glassy Carbon Electrodes Modified with Singleâ€Wall Carbon Nanotubes Covalently Functionalized with Polylysine. Electroanalysis, 2015, 27, 1565-1571.	1.5	13
20	Amperometric biosensor for the quantification of gentisic acid using polyphenol oxidase modified carbon paste electrode. Talanta, 2000, 53, 489-495.	2.9	10
21	Development and characterisation of self-assembled graphene hydrogel-based anodes for bioelectrochemical systems. RSC Advances, 2018, 8, 26755-26763.	1.7	7
22	Adsorption and Electrooxidation of DNA at Glassy Carbon Paste Electrodes. Analytical Letters, 2010, 43, 1703-1712.	1.0	4
23	Deprotonation of Glyphosate Studied with X-ray Photoelectron Spectroscopy. Materials Today: Proceedings, 2019, 14, 117-121.	0.9	3
24	Characterization of DNA Layers Adsorbed on Glassy Carbon Electrodes. Electroanalysis, 2008, 20, 739-749.	1.5	2
25	SPR Biosensing MUA/Poly-L-lysine Platform for the Detection of 2,4-Dinitrophenol as Small Molecule Model System, Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	1