Yusuke Sawaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8981944/publications.pdf Version: 2024-02-01

YUSUKE SAWARI

#	Article	IF	CITATIONS
1	Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochimica Et Cosmochimica Acta, 2015, 156, 173-193.	3.9	222
2	The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 2010, 176, 46-64.	2.7	202
3	Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Research, 2008, 14, 193-208.	6.0	147
4	Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran. Gondwana Research, 2013, 23, 333-353.	6.0	101
5	Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Research, 2008, 14, 159-174.	6.0	91
6	New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng'an and Chengjiang areas, South China. Gondwana Research, 2014, 25, 1027-1044.	6.0	86
7	Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics. Tectonophysics, 2015, 662, 40-66.	2.2	82
8	Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Research, 2014, 25, 1057-1069.	6.0	68
9	Sr isotope excursion across the Precambrian–Cambrian boundary in the Three Gorges area, South China. Gondwana Research, 2008, 14, 134-147.	6.0	62
10	Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: Possible proxy for the redox state of ancient seawater. Geochimica Et Cosmochimica Acta, 2010, 74, 2760-2778.	3.9	59
11	The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Research, 2014, 25, 945-965.	6.0	59
12	Initiation of leaking Earth: An ultimate trigger of the Cambrian explosion. Gondwana Research, 2014, 25, 910-944.	6.0	49
13	Geotectonic framework of the Blueschist Unit on Anglesey–Lleyn, UK, and its role in the development of a Neoproterozoic accretionary orogen. Precambrian Research, 2007, 153, 11-28.	2.7	45
14	Internal structures and U–Pb ages of zircons from a tuff layer in the Meishucunian formation, Yunnan Province, South China. Gondwana Research, 2008, 14, 148-158.	6.0	45
15	87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig Glaciogenic Formation, Scotland. Precambrian Research, 2010, 179, 150-164.	2.7	37
16	In situ iron isotope analyses of pyrite and organic carbon isotope ratios in the Fortescue Group: Metabolic variations of a Late Archean ecosystem. Precambrian Research, 2012, 212-213, 169-193.	2.7	37
17	Nine requirements for the origin of Earth's life: Not at the hydrothermal vent, but in a nuclear geyser system. Geoscience Frontiers, 2019, 10, 1337-1357.	8.4	37
18	Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449, 397-420.	2.3	35

YUSUKE SAWAKI

#	Article	IF	CITATIONS
19	Occurrence and geochronology of the Eoarchean, â^1⁄43.9 Ga, Iqaluk Gneiss in the Saglek Block, northern Labrador, Canada: Evidence for the oldest supracrustal rocks in the world. Precambrian Research, 2016, 278, 218-243.	2.7	34
20	Tonian-Cryogenian boundary sections of Argyll, Scotland. Precambrian Research, 2018, 319, 37-64.	2.7	32
21	A prolonged granitoid formation in Saglek Block, Labrador: Zonal growth and crustal reworking of continental crust in the Eoarchean. Geoscience Frontiers, 2017, 8, 355-385.	8.4	29
22	In-situ iron isotope analysis of pyrites in ~ 3.7 Ga sedimentary protoliths from the Isua supracrustal belt, southern West Greenland. Chemical Geology, 2015, 401, 126-139.	3.3	28
23	The marine environments encompassing the Neoproterozoic glaciations: Evidence from C, Sr and Fe isotope ratios in the Hecla Hoek Supergroup in Svalbard. Precambrian Research, 2015, 263, 19-42.	2.7	28
24	Depth variation of carbon and oxygen isotopes of calcites in Archean altered upperoceanic crust: Implications for the CO2 flux from ocean to oceanic crust in the Archean. Earth and Planetary Science Letters, 2012, 321-322, 64-73.	4.4	27
25	In-situ analyses of phosphorus contents of carbonate minerals: Reconstruction of phosphorus contents of seawater from the Ediacaran to early Cambrian. Gondwana Research, 2014, 25, 1090-1107.	6.0	27
26	Reactions between olivine and CO2-rich seawater at 300°C: Implications for H2 generation and CO2 sequestration on theÂearlyÂEarth. Geoscience Frontiers, 2017, 8, 387-396.	8.4	26
27	Global perturbations of carbon cycle during the Triassic–Jurassic transition recorded in the mid-Panthalassa. Earth and Planetary Science Letters, 2018, 500, 105-116.	4.4	26
28	Imbricated ocean-plate stratigraphy and U-Pb zircon ages from tuff beds in cherts in the Ballantrae complex, SW Scotland. Bulletin of the Geological Society of America, 2010, 122, 454-464.	3.3	24
29	Reactions between komatiite and CO2-rich seawater at 250 and 350°C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system. Progress in Earth and Planetary Science, 2016, 3, .	3.0	24
30	The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area, South China. Gondwana Research, 2014, 25, 1070-1089.	6.0	23
31	Ancient oceanic crust in island arc lower crust: Evidence from oxygen isotopes in zircons from the Tanzawa Tonalitic Pluton. Lithos, 2015, 228-229, 43-54.	1.4	23
32	An integrated chemostratigraphic (δ13C-δ18O-87Sr/86Sr-δ15N) study of the Doushantuo Formation in western Hubei Province, South China. Precambrian Research, 2019, 320, 232-252.	2.7	22
33	Rock magnetism of tiny exsolved magnetite in plagioclase from a Paleoarchean granitoid in the Pilbara craton. Geochemistry, Geophysics, Geosystems, 2015, 16, 112-125.	2.5	20
34	The Late Jurassic magmatic protoliths of the Mikabu greenstones in SW Japan: A fragment of an oceanic plateau in the Paleo-Pacific Ocean. Journal of Asian Earth Sciences, 2019, 169, 228-236.	2.3	20
35	Shift in limiting nutrients in the late Ediacaran–early Cambrian marine systems of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 530, 281-299. 	2.3	18
36	In-situ iron isotope analyses of pyrites from 3.5 to 3.2Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton. Chemical Geology, 2015, 403, 58-73.	3.3	17

YUSUKE SAWAKI

#	Article	IF	CITATIONS
37	Ordovician ocean plate stratigraphy and thrust duplexes of the Ballantrae Complex, SW Scotland: Implications for the pelagic deposition rate and forearc accretion in the closing Iapetus Ocean. Tectonophysics, 2015, 662, 312-327.	2.2	16
38	Redox history of the Three Gorges region during the Ediacaran and Early Cambrian as indicated by the Fe isotope. Geoscience Frontiers, 2018, 9, 155-172.	8.4	16
39	Redox condition and nitrogen cycle in the Permian deep mid-ocean: A possible contrast between Panthalassa and Tethys. Global and Planetary Change, 2019, 172, 179-199.	3.5	16
40	Large P–T gap between Ballantrae blueschist/garnet pyroxenite and surrounding ophiolite, southern Scotland, UK: Diapiric exhumation of a Caledonian serpentinite mélange. Lithos, 2008, 104, 337-354.	1.4	14
41	Zircon U–Pb dating from the mafic enclaves in the Tanzawa Tonalitic Pluton, Japan: Implications for arc history and formation age of the lower-crust. Lithos, 2014, 196-197, 301-320.	1.4	14
42	Geochemical characteristics of zircons in the <scp>A</scp> shizuri <scp>A</scp> â€type granitoids: <scp>A</scp> n additional granite topology tool for detrital zircon studies. Island Arc, 2017, 26, e12216.	1.1	13
43	Redox conditions and nitrogen cycling during the Triassic-Jurassic transition: A new perspective from the mid-Panthalassa. Earth-Science Reviews, 2020, 204, 103173.	9.1	13
44	Accreted Kula plate fragment at 94Ma in the Yokonami-melange, Shimanto-belt, Shikoku, Japan. Tectonophysics, 2014, 623, 136-146.	2.2	12
45	Three-step modernization of the ocean: Modeling of carbon cycles and the revolution of ecological systems in the Ediacaran/Cambrian periods. Geoscience Frontiers, 2015, 6, 121-136.	8.4	12
46	Reconstruction of ocean plate stratigraphy in the Gwna Group, NW Wales: Implications for the subduction–accretion process of a latest Proterozoic trench-forearc. Tectonophysics, 2015, 662, 195-207.	2.2	11
47	Redox condition of the late Neoproterozoic pelagic deep ocean: 57Fe Mössbauer analyses of pelagic mudstones in the Ediacaran accretionary complex, Wales, UK. Tectonophysics, 2015, 662, 472-480.	2.2	11
48	Constraints on the P–T conditions of high-pressure metamorphic rocks from the Inyoni shear zone in the mid-Archean Barberton Greenstone Belt, South Africa. Precambrian Research, 2018, 315, 1-18.	2.7	11
49	Chronological constraints on the Paleoproterozoic Francevillian Group in Gabon. Geoscience Frontiers, 2017, 8, 397-407.	8.4	10
50	Precambrian basement, provenance implication, and tectonic evolution of the Gargan block of the Tuva-Mongolia terranes, Central Asian Orogenic Belt. Gondwana Research, 2019, 75, 172-183.	6.0	10
51	A high-resolution chemostratigraphy of post-Marinoan Cap Carbonate using drill core samples in the Three Gorges area, South China. Geoscience Frontiers, 2016, 7, 663-671.	8.4	9
52	U–Pb ages of granitoids around the Kofu basin: Implications for the Neogene geotectonic evolution of the South Fossa Magna region, central Japan. Island Arc, 2020, 29, e12361.	1.1	9
53	Chemical Nature of Hydrothermal Fluids Generated by Serpentinization and Carbonation of Komatiite: Implications for H ₂ â€Rich Hydrothermal System and Ocean Chemistry in the Early Earth. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009827.	2.5	9
54	Geochemistry of accreted metavolcanic rocks from the Neoproterozoic Gwna Group of Anglesey–Lleyn, NW Wales, U.K.: MORB and OIB in the Iapetus Ocean. Tectonophysics, 2015, 662, 243-255.	2.2	8

YUSUKE SAWAKI

#	Article	IF	CITATIONS
55	Growth, Duplication and Lateral Mutual Compressive Deformation of Akouemma hemisphaeria on the Seafloor of Okondja Basin at 2.2 Ga (Gabon). International Journal of Geosciences, 2017, 08, 1172-1191.	0.6	7
56	New isotopic age data constrain the depositional age and accretionary history of the Neoproterozoic-Ordovician Mona Complex (Anglesey-Lleyn, Wales). Tectonophysics, 2017, 706-707, 164-195.	2.2	6
57	U–Pb zircon geochronology of the North Pole Dome adamellite in the eastern Pilbara Craton. Island Arc, 2018, 27, e12248.	1.1	6
58	New geochronological constraints on the middle Archean Shurugwi greenstone belt toward an understanding of the crustal evolution of the Zimbabwe Craton. Journal of African Earth Sciences, 2021, 173, 104021.	2.0	6
59	Preâ€ŧreatment Methods for Accurate Determination of Total Nitrogen and Organic Carbon Contents and their Stable Isotopic Compositions: Reâ€evaluation from Geological Reference Materials. Geostandards and Geoanalytical Research, 2022, 46, 5-19.	3.1	5
60	Geology around Natural Reactors and Birthplace of Eukaryotes. Journal of Geography (Chigaku) Tj ETQq0 0 0 rgI	3T /Oyerloo	ck 10 Tf 50 54
61	Age constraints on the Palaeoproterozoic Lomagundi–Jatuli Event in Zimbabwe: Zircon geochronology of the Magondi Supergroup. Terra Nova, 2019, 31, 438-444.	2.1	4
62	Traceâ€element composition of zircon in <scp>Kofu and Tanzawa</scp> granitoids, <scp>Japan</scp> : Quantitative indicator of sediment incorporated in parent magma. Island Arc, 2022, 31, .	1.1	4
63	Constraints for the Causes of Mass Extinction at the Triassic–Jurassic Boundary Based on High Precision Platinum Group Element Analyses. Bunseki Kagaku, 2015, 64, 341-348.	0.2	3
64	Spatial distribution and speciation of sulfur in Ediacaran limestones with μ-XRF imaging and XANES spectroscopy: Implications for diagenetic mobilization of sulfur species. Geochimica Et Cosmochimica Acta, 2021, 306, 20-43.	3.9	3
65	The origin of methane in serpentinite-hosted hyperalkaline hot spring at Hakuba Happo, Japan: Radiocarbon, methane isotopologue and noble gas isotope approaches. Earth and Planetary Science Letters, 2022, 585, 117510.	4.4	3
66	Chemical composition and K–Ar age of Phengite from Barrovian metapelites, Loch Leven, Scotland. Journal of the Geological Society of Japan, 2013, 119, 437-442.	0.6	2
67	New chronological constraints on Neoarchean gneisses, Proterozoic cover sediments, and Triassic granite, Jixian, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 182-197.	2.3	2
68	Serpentinite-hosted Hydrothermal System on the Early Earth. Journal of Geography (Chigaku Zasshi), 2019, 128, 491-511.	0.3	2
69	Hf-O isotope systematics of zircons from the Taitao granitoids: Implications for slab-melting material. Lithos, 2020, 372-373, 105665.	1.4	2
70	Unravelling the Origins of Life: Hakuba Hot-spring Chemistry of Oldest Microbes and Significance of Microbes Surviving in a Hadean-like Environment. Journal of Geography (Chigaku Zasshi), 2020, 129, 757-777.	0.3	2
71	Importance of Prokaryotes for the Origin of Eukaryotes and the Global Environment at 2.4-2.0 Ga. Journal of Geography (Chigaku Zasshi), 2020, 129, 899-912.	0.3	2
72	Abiotic Methane Generation via CO 2 Hydrogenation With Natural Chromitite Under Hydrothermal Conditions. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009533.	2.5	0