
## Sebastian Meier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8981677/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond<br>scalar couplings. Proceedings of the National Academy of Sciences of the United States of America,<br>2005, 102, 13885-13890.                                                                  | 3.3 | 220       |
| 2  | Quantitative Description of Backbone Conformational Sampling of Unfolded Proteins at Amino Acid<br>Resolution from NMR Residual Dipolar Couplings. Journal of the American Chemical Society, 2009, 131,<br>17908-17918.                                                                          | 6.6 | 187       |
| 3  | Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on<br>Oxideâ€Derived Copper. Angewandte Chemie - International Edition, 2016, 55, 1450-1454.                                                                                                               | 7.2 | 166       |
| 4  | Quantitative Determination of the Conformational Properties of Partially Folded and Intrinsically Disordered Proteins Using NMR Dipolar Couplings. Structure, 2009, 17, 1169-1185.                                                                                                               | 1.6 | 160       |
| 5  | Foldon, The Natural Trimerization Domain of T4 Fibritin, Dissociates into a Monomeric A-state Form<br>containing a Stable β-Hairpin: Atomic Details of Trimer Dissociation and Local β-Hairpin Stability from<br>Residual Dipolar Couplings. Journal of Molecular Biology, 2004, 344, 1051-1069. | 2.0 | 131       |
| 6  | Evolution of complex structures: minicollagens shape the cnidarian nematocyst. Trends in Genetics, 2008, 24, 431-438.                                                                                                                                                                            | 2.9 | 117       |
| 7  | A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 2015, 469, 375-389.                                                                                                                       | 1.7 | 109       |
| 8  | Very Fast Folding and Association of a Trimerization Domain from Bacteriophage T4 Fibritin. Journal of Molecular Biology, 2004, 337, 905-915.                                                                                                                                                    | 2.0 | 104       |
| 9  | Conformational distributions of unfolded polypeptides from novel NMR techniques. Journal of Chemical Physics, 2008, 128, 052204.                                                                                                                                                                 | 1.2 | 88        |
| 10 | Metabolic pathway visualization in living yeast by DNP-NMR. Molecular BioSystems, 2011, 7, 2834.                                                                                                                                                                                                 | 2.9 | 87        |
| 11 | Mapping the Conformational Landscape of Urea-Denatured Ubiquitin Using Residual Dipolar<br>Couplings. Journal of the American Chemical Society, 2007, 129, 9799-9807.                                                                                                                            | 6.6 | 78        |
| 12 | Tissue-specific Short Chain Fatty Acid Metabolism and Slow Metabolic Recovery after Ischemia from<br>Hyperpolarized NMR in Vivo. Journal of Biological Chemistry, 2009, 284, 36077-36082.                                                                                                        | 1.6 | 76        |
| 13 | Structural characterization of homogalacturonan by NMR spectroscopy—assignment of reference<br>compounds. Carbohydrate Research, 2008, 343, 2830-2833.                                                                                                                                           | 1.1 | 75        |
| 14 | Strategy for Nuclear-Magnetic-Resonance-Based Metabolomics of Human Feces. Analytical Chemistry, 2015, 87, 5930-5937.                                                                                                                                                                            | 3.2 | 69        |
| 15 | Imaging of branched chain amino acid metabolism in tumors with hyperpolarized <sup>13</sup> C<br>ketoisocaproate. International Journal of Cancer, 2010, 127, 729-736.                                                                                                                           | 2.3 | 63        |
| 16 | Real-time detection of central carbon metabolism in living <i>Escherichia coli</i> and its response to perturbations. FEBS Letters, 2011, 585, 3133-3138.                                                                                                                                        | 1.3 | 63        |
| 17 | Charged acrylamide copolymer gels as media for weak alignment. Journal of Biomolecular NMR, 2002,<br>24, 351-356.                                                                                                                                                                                | 1.6 | 60        |
| 18 | Development of Dissolution DNP-MR Substrates for Metabolic Research. Applied Magnetic Resonance, 2012, 43, 223-236.                                                                                                                                                                              | 0.6 | 60        |

| #  | Article                                                                                                                                                                                                           | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Study of molecular interactions with 13C DNP-NMR. Journal of Magnetic Resonance, 2010, 203, 52-56.                                                                                                                | 1.2 | 59        |
| 20 | Continuous Molecular Evolution of Protein-Domain Structures by Single Amino Acid Changes.<br>Current Biology, 2007, 17, 173-178.                                                                                  | 1.8 | 56        |
| 21 | Tin-containing silicates: identification of a glycolytic pathway via 3-deoxyglucosone. Green Chemistry, 2016, 18, 3360-3369.                                                                                      | 4.6 | 56        |
| 22 | Direct Observation of Dipolar Couplings and Hydrogen Bonds across a Î <sup>2</sup> -Hairpin in 8 M Urea. Journal of<br>the American Chemical Society, 2007, 129, 754-755.                                         | 6.6 | 54        |
| 23 | Oxidative Depolymerization of Kraft Lignin for Microbial Conversion. ACS Sustainable Chemistry and Engineering, 2019, 7, 11640-11652.                                                                             | 3.2 | 51        |
| 24 | Hyperpolarized Amino Acids for In Vivo Assays of Transaminase Activity. Chemistry - A European<br>Journal, 2009, 15, 10010-10012.                                                                                 | 1.7 | 50        |
| 25 | Discovery of fungal oligosaccharide-oxidising flavo-enzymes with previously unknown substrates, redox-activity profiles and interplay with LPMOs. Nature Communications, 2021, 12, 2132.                          | 5.8 | 50        |
| 26 | Chemodiversity of Ladder-Frame Prymnesin Polyethers in <i>Prymnesium parvum</i> . Journal of Natural Products, 2016, 79, 2250-2256.                                                                               | 1.5 | 47        |
| 27 | Hyperpolarized NMR Probes for Biological Assays. Sensors, 2014, 14, 1576-1597.                                                                                                                                    | 2.1 | 46        |
| 28 | Detection of low-populated reaction intermediates with hyperpolarized NMR. Chemical Communications, 2009, , 5168.                                                                                                 | 2.2 | 44        |
| 29 | Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.<br>Carbohydrate Polymers, 2015, 132, 409-418.                                                                   | 5.1 | 44        |
| 30 | Specific and Nonspecific Interactions in Ultraweak Protein–Protein Associations Revealed by Solvent<br>Paramagnetic Relaxation Enhancements. Journal of the American Chemical Society, 2014, 136,<br>10277-10286. | 6.6 | 41        |
| 31 | NMR Insights into the Inner Workings of Living Cells. Analytical Chemistry, 2015, 87, 119-132.                                                                                                                    | 3.2 | 41        |
| 32 | Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on<br>Oxideâ€Derived Copper. Angewandte Chemie, 2016, 128, 1472-1476.                                                       | 1.6 | 39        |
| 33 | Minicollagen-15, a Novel Minicollagen Isolated from Hydra, Forms Tubule Structures in Nematocysts.<br>Journal of Molecular Biology, 2008, 376, 1008-1020.                                                         | 2.0 | 38        |
| 34 | Quantitative dynamic nuclear polarizationâ€NMR on blood plasma for assays of drug metabolism. NMR<br>in Biomedicine, 2011, 24, 96-103.                                                                            | 1.6 | 37        |
| 35 | Unmixing the NMR spectra of similar species – vive la différence. Chemical Communications, 2013, 49,<br>10510.                                                                                                    | 2.2 | 37        |
| 36 | High-Accuracy Residual1HNâ^'13C and1HNâ^'1HNDipolar Couplings in Perdeuterated Proteins. Journal of<br>the American Chemical Society, 2003, 125, 44-45.                                                           | 6.6 | 36        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structural Analysis of B-Box 2 from MuRF1: Identification of a Novel Self-Association Pattern in a RING-like Fold. Biochemistry, 2008, 47, 10722-10730.                                                          | 1.2 | 36        |
| 38 | A biological cosmos of parallel universes: Does protein structural plasticity facilitate evolution?.<br>BioEssays, 2007, 29, 1095-1104.                                                                          | 1.2 | 35        |
| 39 | Combined Function of BrÃ,nsted and Lewis Acidity in the Zeoliteâ€Catalyzed Isomerization of Glucose to<br>Fructose in Alcohols. ChemCatChem, 2016, 8, 3107-3111.                                                 | 1.8 | 35        |
| 40 | Direct Observation of Metabolic Differences in Living <i>Escherichia Coli</i> Strains Kâ€12 and BL21.<br>ChemBioChem, 2012, 13, 308-310.                                                                         | 1.3 | 34        |
| 41 | Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydrate Polymers, 2016, 152, 51-61.                                           | 5.1 | 34        |
| 42 | Karmitoxin: An Amine-Containing Polyhydroxy-Polyene Toxin from the Marine Dinoflagellate<br>Karlodinium armiger. Journal of Natural Products, 2017, 80, 1287-1293.                                               | 1.5 | 34        |
| 43 | Fast and Accurate Quantitation of Glucans in Complex Mixtures by Optimized Heteronuclear NMR Spectroscopy. Analytical Chemistry, 2013, 85, 8802-8808.                                                            | 3.2 | 33        |
| 44 | Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS ONE, 2017, 12, e0175488.                                                                  | 1.1 | 33        |
| 45 | Kinetic analysis of hexose conversion to methyl lactate by Sn-Beta: effects of substrate masking and of water. Catalysis Science and Technology, 2018, 8, 2137-2145.                                             | 2.1 | 33        |
| 46 | Shapeâ€selective Valorization of Biomassâ€derived Glycolaldehyde using Tinâ€containing Zeolites.<br>ChemSusChem, 2016, 9, 3054-3061.                                                                             | 3.6 | 31        |
| 47 | Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Communications Chemistry, 2018, 1, .                                             | 2.0 | 31        |
| 48 | Solventâ€Activated Hafnium ontaining Zeolites Enable Selective and Continuous Glucose–Fructose<br>Isomerisation. Angewandte Chemie - International Edition, 2020, 59, 20017-20023.                               | 7.2 | 31        |
| 49 | Ultrahigh-Resolution Backbone Structure of Perdeuterated Protein GB1 Using Residual Dipolar<br>Couplings from Two Alignment Media. Angewandte Chemie - International Edition, 2006, 45, 8166-8169.               | 7.2 | 30        |
| 50 | Detecting Beer Intake by Unique Metabolite Patterns. Journal of Proteome Research, 2016, 15, 4544-4556.                                                                                                          | 1.8 | 30        |
| 51 | Synthesis of a novel polyester building block from pentoses by tin-containing silicates. RSC Advances, 2017, 7, 985-996.                                                                                         | 1.7 | 29        |
| 52 | Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant<br>Carbohydrates. ChemSusChem, 2017, 10, 2990-2996.                                                                | 3.6 | 29        |
| 53 | The Structure of the Cys-rich Terminal Domain of Hydra Minicollagen, Which Is Involved in Disulfide<br>Networks of the Nematocyst Wall. Journal of Biological Chemistry, 2004, 279, 30395-30401.                 | 1.6 | 28        |
| 54 | Profiling of carbohydrate mixtures at unprecedented resolution using<br>high-precision <sup>1</sup> H- <sup>13</sup> C chemical shift measurements and a reference library.<br>Analyst, The, 2014, 139, 401-406. | 1.7 | 28        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: silyl species enable reactivity. Green Chemistry, 2018, 20, 5327-5335.                                                                                            | 4.6 | 28        |
| 56 | Sequence–Structure and Structure–Function Analysis in Cysteine-rich Domains Forming the<br>Ultrastable Nematocyst Wall. Journal of Molecular Biology, 2007, 368, 718-728.                                                                                  | 2.0 | 27        |
| 57 | NMR characterization of chemically synthesized branched α-dextrin model compounds. Carbohydrate<br>Research, 2015, 403, 149-156.                                                                                                                           | 1.1 | 25        |
| 58 | Oxidative Depolymerisation of Lignosulphonate Lignin into Low-Molecular-Weight Products with<br>Cu–Mn/δ-Al2O3. Topics in Catalysis, 2019, 62, 639-648.                                                                                                     | 1.3 | 25        |
| 59 | Developing Inhibitors of the p47phox–p22phox Protein–Protein Interaction by Fragment-Based Drug<br>Discovery. Journal of Medicinal Chemistry, 2020, 63, 1156-1177.                                                                                         | 2.9 | 25        |
| 60 | Oxidative depolymerization of Kraft lignin to high-value aromatics using a homogeneous<br>vanadium–copper catalyst. Catalysis Science and Technology, 2021, 11, 1843-1853.                                                                                 | 2.1 | 24        |
| 61 | High-Resolution Structure of the Histidine-Containing Phosphocarrier Protein (HPr) from<br>Staphylococcus aureus and Characterization of Its Interaction with the Bifunctional HPr<br>Kinase/Phosphorylase. Journal of Bacteriology, 2004, 186, 5906-5918. | 1.0 | 22        |
| 62 | 1H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer. Food Chemistry, 2014, 150, 65-72.                                                                                                                                | 4.2 | 21        |
| 63 | Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin.<br>Food Hydrocolloids, 2015, 50, 203-210.                                                                                                                 | 5.6 | 21        |
| 64 | Mechanism and stereoselectivity of zeolite-catalysed sugar isomerisation in alcohols. Chemical Communications, 2016, 52, 12773-12776.                                                                                                                      | 2.2 | 20        |
| 65 | Realâ€Time DNP NMR Observations of Acetic Acid Uptake, Intracellular Acidification, and of<br>Consequences for Glycolysis and Alcoholic Fermentation in Yeast. Chemistry - A European Journal,<br>2013, 19, 13288-13293.                                   | 1.7 | 19        |
| 66 | Depolymerization of fucoidan with endo-fucoidanase changes bioactivity in processes relevant for bone regeneration. Carbohydrate Polymers, 2022, 286, 119286.                                                                                              | 5.1 | 18        |
| 67 | Facile and benign conversion of sucrose to fructose using zeolites with balanced BrÃ,nsted and Lewis acidity. Catalysis Science and Technology, 2017, 7, 2782-2788.                                                                                        | 2.1 | 17        |
| 68 | Effects of Alkaliâ€Metal Ions and Counter Ions in Snâ€Beta atalyzed Carbohydrate Conversion.<br>ChemSusChem, 2018, 11, 1198-1203.                                                                                                                          | 3.6 | 17        |
| 69 | Metabolic Fate of <sup>13</sup> C-Labeled Polydextrose and Impact on the Gut Microbiome: A<br>Triple-Phase Study in a Colon Simulator. Journal of Proteome Research, 2018, 17, 1041-1053.                                                                  | 1.8 | 17        |
| 70 | NMR Spectroscopic Isotope Tracking Reveals Cascade Steps in Carbohydrate Conversion by Tinâ€Beta.<br>ChemCatChem, 2018, 10, 1414-1419.                                                                                                                     | 1.8 | 17        |
| 71 | Selective Enzymatic Release and Gel Formation by Cross-Linking of Feruloylated<br>Glucurono-Arabinoxylan from Corn Bran. ACS Sustainable Chemistry and Engineering, 2020, 8,<br>8164-8174.                                                                 | 3.2 | 17        |
| 72 | Timeâ€Resolved in‣itu Observation of Starch Polysaccharide Degradation Pathways. ChemBioChem, 2013,<br>14, 2506-2511.                                                                                                                                      | 1.3 | 16        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Probing Interactions between β-Glucan and Bile Salts at Atomic Detail by<br><sup>1</sup> H– <sup>13</sup> C NMR Assays. Journal of Agricultural and Food Chemistry, 2014, 62,<br>11472-11478.                                   | 2.4 | 16        |
| 74 | Determination of a high-precision NMR structure of the minicollagen cysteine rich domain fromHydraand characterization of its disulfide bond formation. FEBS Letters, 2004, 569, 112-116.                                       | 1.3 | 15        |
| 75 | Development of brewing science in (and since) the late 19th century: Molecular profiles of 110–130year old beers. Food Chemistry, 2015, 183, 227-234.                                                                           | 4.2 | 15        |
| 76 | Mechanism and malleability of glucose dehydration to HMF: entry points and water-induced diversions. Catalysis Science and Technology, 2020, 10, 1724-1730.                                                                     | 2.1 | 15        |
| 77 | The structure of the AliC GH13 α-amylase from <i>Alicyclobacillus</i> sp. reveals the accommodation of starch branching points in the α-amylase family. Acta Crystallographica Section D: Structural Biology, 2019, 75, 1-7.    | 1.1 | 15        |
| 78 | Probing Helical Hydrophobic Binding Sites in Branched Starch Polysaccharides Using NMR<br>Spectroscopy. Chemistry - A European Journal, 2013, 19, 16314-16320.                                                                  | 1.7 | 14        |
| 79 | Simultaneous Determination of Binding Constants for Multiple Carbohydrate Hosts in Complex<br>Mixtures. Journal of the American Chemical Society, 2014, 136, 11284-11287.                                                       | 6.6 | 14        |
| 80 | Ammonia borane enabled upgrading of biomass derivatives at room temperature. Green Chemistry, 2020, 22, 5972-5977.                                                                                                              | 4.6 | 14        |
| 81 | Backbone resonance assignment of the 298 amino acid catalytic domain of protein tyrosine<br>phosphatase 1B (PTP1B). Journal of Biomolecular NMR, 2002, 24, 165-166.                                                             | 1.6 | 12        |
| 82 | Monitoring pathways of β-glucan degradation by enzyme mixtures in situ. Carbohydrate Research, 2013,<br>368, 47-51.                                                                                                             | 1.1 | 12        |
| 83 | Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. Molecular Catalysis, 2021, 510, 111686.                                                       | 1.0 | 12        |
| 84 | Sulfite Action in Glycolytic Inhibition: In Vivo Realâ€īime Observation by Hyperpolarized <sup>13</sup> C<br>NMR Spectroscopy. ChemBioChem, 2012, 13, 2265-2269.                                                                | 1.3 | 11        |
| 85 | Discovery and Exploration of the Efficient Acyclic Dehydration of Hexoses in Dimethyl Sulfoxide/Water. ChemSusChem, 2019, 12, 5086-5091.                                                                                        | 3.6 | 11        |
| 86 | The Endo-α(1,4) Specific Fucoidanase Fhf2 From Formosa haliotis Releases Highly Sulfated Fucoidan<br>Oligosaccharides. Frontiers in Plant Science, 2022, 13, 823668.                                                            | 1.7 | 11        |
| 87 | Determination of native capsular polysaccharide structures of Streptococcus pneumoniae serotypes<br>39, 42, and 47F and comparison to genetically or serologically related strains. Carbohydrate Research,<br>2014, 395, 38-46. | 1.1 | 10        |
| 88 | Stoichiometric active site modification observed by alkali ion titrations of Sn-Beta. Catalysis Science<br>and Technology, 2019, 9, 4339-4346.                                                                                  | 2.1 | 10        |
| 89 | Probing the Lewis Acid Catalyzed Acyclic Pathway of Carbohydrate Conversion in Methanol by <i>In<br/>Situ</i> NMR. ChemCatChem, 2019, 11, 5077-5084.                                                                            | 1.8 | 10        |
| 90 | Catalytic cycle of carbohydrate dehydration by Lewis acids: structures and rates from synergism of conventional and DNP NMR. Chemical Communications, 2020, 56, 6245-6248.                                                      | 2.2 | 10        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Antibody glycans wiggle and jiggle. Nature Chemical Biology, 2011, 7, 131-132.                                                                                                                      | 3.9 | 9         |
| 92  | Probing the structural details of xylan degradation by real-time NMR spectroscopy. Carbohydrate<br>Polymers, 2014, 112, 587-594.                                                                    | 5.1 | 9         |
| 93  | Detecting Elusive Intermediates in Carbohydrate Conversion: A Dynamic Ensemble of Acyclic<br>Glucose–Catalyst Complexes. ACS Sustainable Chemistry and Engineering, 2017, 5, 5571-5577.             | 3.2 | 9         |
| 94  | Exploring the Synthesis of Mesoporous Stannosilicates as Catalysts for the Conversion of Mono- and Oligosaccharides into Methyl Lactate. Topics in Catalysis, 2019, 62, 628-638.                    | 1.3 | 9         |
| 95  | Enhanced 13C NMR detects extended reaction networks in living cells. Chemical Communications, 2021, 57, 10572-10575.                                                                                | 2.2 | 9         |
| 96  | Mechanistic Studies of Continuous Glucose Upgrading over Lewis Acidic Silicates by <i>Operando</i> UV–Vis and HSQC NMR. ACS Catalysis, 2021, 11, 1296-1308.                                         | 5.5 | 9         |
| 97  | Insights into Ammonia Borane-Enabled Green Synthesis of <i>N</i> -Substituted Lactams from<br>Biomass-Derived Keto Acids and Amines. ACS Sustainable Chemistry and Engineering, 2021, 9, 4377-4382. | 3.2 | 9         |
| 98  | The Endo-α(1,3)-Fucoidanase Mef2 Releases Uniquely Branched Oligosaccharides from Saccharina<br>latissima Fucoidans. Marine Drugs, 2022, 20, 305.                                                   | 2.2 | 9         |
| 99  | pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into<br>helical non-amyloid fibrils. Nature Communications, 2022, 13, .                              | 5.8 | 9         |
| 100 | Barley genotypic β-glucan variation combined with enzymatic modifications direct its potential as a natural ingredient in a high fiber extract. Journal of Cereal Science, 2017, 75, 45-53.         | 1.8 | 8         |
| 101 | Combined In-Cell NMR and Simulation Approach to Probe Redox-Dependent Pathway Control.<br>Analytical Chemistry, 2019, 91, 5395-5402.                                                                | 3.2 | 8         |
| 102 | Response Factors Enable Rapid Quantitative 2D NMR Analysis in Catalytic Biomass Conversion to<br>Renewable Chemicals. Topics in Catalysis, 2019, 62, 590-598.                                       | 1.3 | 8         |
| 103 | Adiabatic Lowâ€Pass J Filters for Artifact Suppression in Heteronuclear NMR. ChemPhysChem, 2009, 10,<br>893-895.                                                                                    | 1.0 | 7         |
| 104 | Recent progress in heteronuclear long-range NMR of complex carbohydrates: 3D H2BC and clean<br>HMBC. Carbohydrate Research, 2009, 344, 2274-2278.                                                   | 1.1 | 7         |
| 105 | NMR assignment of structural motifs in intact β-limit dextrin and its α-amylase degradation products in situ. Carbohydrate Research, 2012, 359, 76-80.                                              | 1.1 | 7         |
| 106 | In-situ annotation of carbohydrate diversity, abundance, and degradability in highly complex mixtures using NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2014, 406, 7763-7772.         | 1.9 | 7         |
| 107 | Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades. Analyst, The, 2016, 141, 823-826.                                                | 1.7 | 7         |
| 108 | Uncharted Pathways for CrCl3 Catalyzed Glucose Conversion in Aqueous Solution. Topics in Catalysis, 2019, 62, 669-677.                                                                              | 1.3 | 7         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Ru-Catalyzed Oxidative Cleavage of Guaiacyl GlycerolGuaiacyl Ether-a Representative -O-4 Lignin<br>Model Compound. Catalysts, 2019, 9, 832.                                                                                          | 1.6 | 7         |
| 110 | Kinetic variations in acid-catalyzed monosaccharide conversion. Catalysis Communications, 2020, 135, 105894.                                                                                                                         | 1.6 | 7         |
| 111 | Versatile Procedures for Reliable NMR Quantification of CO <sub>2</sub> Electroreduction Products.<br>Journal of Physical Chemistry C, 2022, 126, 11026-11032.                                                                       | 1.5 | 7         |
| 112 | 3D H2BC: A novel experiment for small-molecule and biomolecular NMR at natural isotopic abundance.<br>Journal of Magnetic Resonance, 2009, 200, 340-343.                                                                             | 1.2 | 6         |
| 113 | Hyperpolarised organic phosphates as NMR reporters of compartmental pH. Chemical Communications, 2016, 52, 2288-2291.                                                                                                                | 2.2 | 6         |
| 114 | Solventâ€Activated Hafniumâ€Containing Zeolites Enable Selective and Continuous Glucose–Fructose<br>Isomerisation. Angewandte Chemie, 2020, 132, 20192-20198.                                                                        | 1.6 | 6         |
| 115 | Structural determination of Streptococcus pneumoniae repeat units in serotype 41A and 41F capsular polysaccharides to probe gene functions in the corresponding capsular biosynthetic loci. Carbohydrate Research, 2014, 400, 26-32. | 1.1 | 5         |
| 116 | Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures. Chemical Communications, 2015, 51, 3073-3076.                                                        | 2.2 | 5         |
| 117 | <sup>1</sup> H– <sup>13</sup> C NMR-Based Profiling of Biotechnological Starch Utilization.<br>Analytical Chemistry, 2016, 88, 9685-9690.                                                                                            | 3.2 | 5         |
| 118 | Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites.<br>ChemSusChem, 2016, 9, 3022-3022.                                                                                                    | 3.6 | 5         |
| 119 | Pancreatic Î <sup>2</sup> -cells respond to fuel pressure with an early metabolic switch. Scientific Reports, 2020, 10, 15413.                                                                                                       | 1.6 | 5         |
| 120 | Heterogeneous Baseâ€Catalyzed Conversion of Glycolaldehyde to Aldotetroses: Mechanistic and Kinetic<br>Insight. ChemCatChem, 2021, 13, 5141-5147.                                                                                    | 1.8 | 5         |
| 121 | Visualization of Pathway Usage in an Extended Carbohydrate Conversion Network Reveals the Impact<br>of Solvent-Enabled Proton Transfer. ACS Sustainable Chemistry and Engineering, 2020, 8, 12270-12276.                             | 3.2 | 4         |
| 122 | Reactivity of Polysilazanes Allows Catalystâ€Free Curing of Silicones. Macromolecular Materials and<br>Engineering, 2022, 307, .                                                                                                     | 1.7 | 4         |
| 123 | Nuclear magnetic resonance as a quantitative tool to study interactions in biomacromolecules. Pure and Applied Chemistry, 2005, 77, 1409-1424.                                                                                       | 0.9 | 3         |
| 124 | Phosphocholine-Decorated PPI-Dendrimers Mimic Cell Membrane Phosphocholine Clusters and Tune the Innate Immune Activity of C-Reactive Protein. Biomacromolecules, 2021, 22, 1664-1674.                                               | 2.6 | 2         |
| 125 | Sensitive NMR method for detecting carbohydrate influx into competing chemocatalytic pathways.<br>Analyst, The, 2020, 145, 4427-4431.                                                                                                | 1.7 | 0         |
| 126 | Chemodiversity of the ladder-frame prymnesin polyethers of the fish-killing microalgal Prymnesium<br>parvum. Planta Medica, 2016, 81, S1-S381.                                                                                       | 0.7 | 0         |