Bolshakova Olga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8981669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complexes of nanodiamonds with Gd-fullerenols for biomedicine. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 36-45.	2.1	4
2	Diamond-based nanostructures with metal-organic molecules. Soft Materials, 2022, 20, S34-S43.	1.7	5
3	Carbon Nanoparticles as Promising Neuroprotectors: Pro et Contra. II. Application of Carbon Nanoparticles in Neurobiology and Neurology. Nanobiotechnology Reports, 2022, 17, 141-154.	0.6	1
4	Carbon Nanoparticles as Promising Neuroprotectors: Pro et Contra. I. Functionalization and Toxicity. Nanobiotechnology Reports, 2022, 17, 132-140.	0.6	2
5	Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism and Related Disorders, 2021, 84, 112-121.	2.2	25
6	The neuroprotective effect of fullerenols on a model of Parkinson's disease in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2020, 523, 446-451.	2.1	14
7	Blood-Brain Barrier Penetrating Luminescent Conjugates Based on Cyclometalated Platinum(II) Complexes. Bioconjugate Chemistry, 2020, 31, 2628-2637.	3.6	10
8	Study of the Neuroprotective Properties of Fullerenol C60(OH)30 with a Model of Alzheimer's Disease. Nanotechnologies in Russia, 2020, 15, 212-217.	0.7	3
9	In vitro and in vivo study of the toxicity of fullerenols Đ¡60, Đ¡70 and Đ¡120Đž obtained by an original two step method. Materials Science and Engineering C, 2019, 104, 109945.	7.3	16
10	State of aggregation and toxicity of aqueous fullerene solutions. Applied Surface Science, 2019, 483, 69-75.	6.1	29
11	Yeast red pigment modifies cloned human α-synuclein pathogenesis in Parkinson disease models in Saccharomyces cerevisiae and Drosophila melanogaster. Neurochemistry International, 2018, 120, 172-181.	3.8	10
12	HumanAPPGene Expression Alters Active Zone Distribution and Spontaneous Neurotransmitter Release at theDrosophilaLarval Neuromuscular Junction. Neural Plasticity, 2017, 2017, 1-10.	2.2	5
13	GAPDH binders as potential drugs for the therapy of polyglutamine diseases: Design of a new screening assay. FEBS Letters, 2015, 589, 581-587.	2.8	21
14	Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons. Russian Journal of Genetics: Applied Research, 2014, 4, 113-121.	0.4	4
15	Morphological abnormalities in <i>Drosophila</i> with overexpression of human APP gene. Open Journal of Animal Sciences, 2013, 03, 49-52.	0.6	0
16	Dendrimer D5 is a Vector for Peptide Transport to Brain Cells. Bulletin of Experimental Biology and Medicine, 2011, 150, 429-431.	0.8	7
17	Apolipoprotein E-Mimetics Inhibit Neurodegeneration and Restore Cognitive Functions in a Transgenic Drosophila Model of Alzheimer's Disease. PLoS ONE, 2009, 4, e8191.	2.5	61
18	Protein transduction domain peptide mediates delivery to the brain via the blood-brain barrier in Drosophila melanogaster. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2009, 3, 149-155.	0.4	2

#	Article	IF	CITATIONS
19	Studying the pathogenesis of Alzheimer's disease in a Drosophila melanogaster model: Human APP overexpression in the brain of transgenic flies leads to deficit of the synaptic protein synaptotagmin. Russian Journal of Genetics, 2009, 45, 105-112.	0.6	4