Stefan D Magez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8981434/publications.pdf

Version: 2024-02-01

57631 82410 5,988 133 44 72 citations h-index g-index papers 137 137 137 5727 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Camelid immunoglobulins and nanobody technology. Veterinary Immunology and Immunopathology, 2009, 128, 178-183.	0.5	424
2	Stimulation of Toll-like receptor 3 and 4 induces interleukin- $1\hat{l}^2$ maturation by caspase-8. Journal of Experimental Medicine, 2008, 205, 1967-1973.	4.2	278
3	Efficient Targeting of Conserved Cryptic Epitopes of Infectious Agents by Single Domain Antibodies. Journal of Biological Chemistry, 2004, 279, 1256-1261.	1.6	238
4	Mapping the lectin-like activity of tumor necrosis factor. Science, 1994, 263, 814-817.	6.0	212
5	Tumor Necrosis Factor Alpha Is a Key Mediator in the Regulation of Experimental (i>Trypanosoma brucei (i>Infections. Infection and Immunity, 1999, 67, 3128-3132.	1.0	164
6	iNOS-Producing Inflammatory Dendritic Cells Constitute the Major Infected Cell Type during the Chronic Leishmania major Infection Phase of C57BL/6 Resistant Mice. PLoS Pathogens, 2009, 5, e1000494.	2.1	162
7	The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense American Journal of Tropical Medicine and Hygiene, 2002, 67, 684-690.	0.6	143
8	Trypanosomiasis-Induced B Cell Apoptosis Results in Loss of Protective Anti-Parasite Antibody Responses and Abolishment of Vaccine-Induced Memory Responses. PLoS Pathogens, 2008, 4, e1000078.	2.1	142
9	Specific Uptake of Tumor Necrosis Factor-α Is Involved in Growth Control of Trypanosoma brucei. Journal of Cell Biology, 1997, 137, 715-727.	2.3	140
10	Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nature Medicine, 2006, 12, 580-584.	15.2	140
11	Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense American Journal of Tropical Medicine and Hygiene, 2002, 67, 289-295.	0.6	134
12	The Induction of a Type 1 Immune Response following a <i>Trypanosoma brucei</i> Infection Is MyD88 Dependent. Journal of Immunology, 2005, 175, 2501-2509.	0.4	131
13	Adenylate Cyclases of <i>Trypanosoma brucei</i> Inhibit the Innate Immune Response of the Host. Science, 2012, 337, 463-466.	6.0	130
14	Interferonâ€Î³ and Nitric Oxide in Combination with Antibodies Are Key Protective Host Immune Factors duringTrypanosoma congolenseTc13 Infections. Journal of Infectious Diseases, 2006, 193, 1575-1583.	1.9	102
15	TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death and Differentiation, 2011, 18, 1316-1325.	5.0	102
16	In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice. PLoS Pathogens, 2012, 8, e1002575.	2.1	101
17	Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunology, 1999, 21, 545-554.	0.7	88
18	The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice. PLoS Pathogens, 2008, 4, e1000122.	2.1	77

#	Article	IF	CITATIONS
19	Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Frontiers in Immunology, 2018, 9, 2253.	2.2	74
20	Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei. Parasite Immunology, 1993, 15, 635-641.	0.7	72
21	Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Frontiers in Immunology, 2016, 7, 233.	2.2	72
22	Convergent evolution of cytokines. Nature, 1999, 400, 627-628.	13.7	71
23	A Glycosylphosphatidylinositol-Based Treatment Alleviates Trypanosomiasis-Associated Immunopathology. Journal of Immunology, 2007, 179, 4003-4014.	0.4	68
24	Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. Journal of Controlled Release, 2015, 197, 190-198.	4.8	68
25	VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes and Infection, 2002, 4, 999-1006.	1.0	67
26	Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology, 2008, 213, 823-835.	0.8	67
27	T. brucei Infection Reduces B Lymphopoiesis in Bone Marrow and Truncates Compensatory Splenic Lymphopoiesis through Transitional B-Cell Apoptosis. PLoS Pathogens, 2011, 7, e1002089.	2.1	67
28	African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Frontiers in Immunology, 2018, 9, 218.	2.2	67
29	P75 Tumor Necrosis Factor–Receptor Shedding Occurs as a Protective Host Response during African Trypanosomiasis. Journal of Infectious Diseases, 2004, 189, 527-539.	1.9	66
30	Vaccination against trypanosomiasis. Hum Vaccin, 2011, 7, 1225-1233.	2.4	63
31	Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathogens, 2015, 11, e1004942.	2.1	63
32	Control of Trypanosoma evansiln fection Is IgM Mediated and Does Not Require a Type I Inflammatory Response. Journal of Infectious Diseases, 2007, 195, 1513-1520.	1.9	61
33	Deletion of IL-4Rα on CD4 T Cells Renders BALB/c Mice Resistant to Leishmania major Infection. PLoS Pathogens, 2007, 3, e68.	2.1	61
34	Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. Journal of Immunological Methods, 2008, 329, 138-150.	0.6	61
35	Tsetse Fly Saliva Accelerates the Onset of Trypanosoma brucei Infection in a Mouse Model Associated with a Reduced Host Inflammatory Response. Infection and Immunity, 2006, 74, 6324-6330.	1.0	58
36	High Affinity Nanobodies against the Trypanosome brucei VSG Are Potent Trypanolytic Agents that Block Endocytosis. PLoS Pathogens, 2011, 7, e1002072.	2.1	58

#	Article	IF	Citations
37	African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 2007, 148, 3-13.	0.7	57
38	NK-, NKT- and CD8-Derived IFN \hat{I}^3 Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia. PLoS Pathogens, 2015, 11, e1004964.	2.1	56
39	Receptor-Mediated and Lectin-Like Activities of Carp (<i>Cyprinus carpio</i>) TNF-α. Journal of Immunology, 2009, 183, 5319-5332.	0.4	55
40	<i>Trypanosoma brucei</i> infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. Journal of Leukocyte Biology, 1998, 63, 429-439.	1.5	53
41	Tumor Necrosis Factor (TNF) Receptor–1 (TNFp55) Signal Transduction and Macrophageâ€Derived Soluble TNF Are Crucial for Nitric Oxide–Mediated <i>Trypanosoma congolense</i> Parasite Killing. Journal of Infectious Diseases, 2007, 196, 954-962.	1.9	53
42	A role for TNF during African trypanosomiasis: involvement in parasite control immunosuppression and pathology. Research in Immunology, 1993, 144, 370-376.	0.9	50
43	Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. International Journal for Parasitology, 2006, 36, 1025-1035.	1.3	50
44	Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Scientific Reports, 2018, 8, 9019.	1.6	49
45	Comparative Analysis of Antibody Responses against HSP60, Invariant Surface Glycoprotein 70, and Variant Surface Glycoprotein Reveals a Complex Antigen-Specific Pattern of Immunoglobulin Isotype Switching during Infection by Trypanosoma brucei. Infection and Immunity, 2000, 68, 848-860.	1.0	46
46	Current status of vaccination against African trypanosomiasis. Parasitology, 2010, 137, 2017-2027.	0.7	46
47	The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 473-482.	0.8	43
48	Using microdialysis to analyse the passage of monovalent nanobodies through the blood–brain barrier. British Journal of Pharmacology, 2012, 165, 2341-2353.	2.7	42
49	Contributions of experimental mouse models to the understanding of African trypanosomiasis. Trends in Parasitology, 2008, 24, 411-418.	1.5	41
50	Direct Detection and Identification of African Trypanosomes by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Journal of Clinical Microbiology, 2002, 40, 4295-4297.	1.8	40
51	The Central Role of Macrophages in Trypanosomiasis-Associated Anemia:Rationale for Therapeutical Approaches. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 71-82.	0.6	40
52	Escape mechanisms of African trypanosomes: why trypanosomosis is keeping us awake. Parasitology, 2015, 142, 417-427.	0.7	40
53	Acute Disruption of Bone Marrow B Lymphopoiesis and Apoptosis of Transitional and Marginal Zone B Cells in the Spleen following a Blood-StagePlasmodium chabaudiInfection in Mice. Journal of Parasitology Research, 2011, 2011, 1-11.	0.5	37
54	Novel therapy based on camelid nanobodies. Therapeutic Delivery, 2013, 4, 1321-1336.	1.2	37

#	Article	IF	CITATIONS
55	Functionalization of gold nanoparticles with nanobodies through physical adsorption. Analytical Methods, 2017, 9, 3430-3440.	1.3	36
56	Mouse models for pathogenic African trypanosomes: unravelling the immunology of hostâ€"parasiteâ€"vector interactions. Parasite Immunology, 2011, 33, 423-429.	0.7	35
57	Antibodyâ€mediated control of <i><scp>T</scp>rypanosoma vivax</i> infection fails in the absence of tumour necrosis factor. Parasite Immunology, 2014, 36, 271-276.	0.7	34
58	Development of a pHrodo-Based Assay for the Assessment of In Vitro and In Vivo Erythrophagocytosis during Experimental Trypanosomosis. PLoS Neglected Tropical Diseases, 2015, 9, e0003561.	1.3	34
59	Control of Experimental Trypanosoma brucei Infections Occurs Independently of Lymphotoxin- $\hat{l}\pm$ Induction. Infection and Immunity, 2002, 70, 1342-1351.	1.0	33
60	African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses?. Frontiers in Immunology, 2017, 8, 582.	2.2	33
61	Neutrophils enhance early Trypanosoma brucei infection onset. Scientific Reports, 2018, 8, 11203.	1.6	33
62	Chronic <i><scp>T</scp>rypanosoma congolense</i> infections in mice cause a sustained disruption of the Bâ€ell homeostasis in the bone marrow and spleen. Parasite Immunology, 2014, 36, 187-198.	0.7	32
63	Scrutinizing the mechanisms underlying the induction of anemia of inflammation through GPI-mediated modulation of macrophage activation in a model of African trypanosomiasis. Microbes and Infection, 2010, 12, 389-399.	1.0	30
64	An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase. PLoS Neglected Tropical Diseases, 2016, 10, e0004420.	1.3	30
65	Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells. PLoS Pathogens, 2016, 12, e1005733.	2.1	30
66	Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunology, 2000, 22, 639-650.	0.7	29
67	Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Frontiers in Immunology, 2020, 11, 382.	2.2	28
68	Generation of a Nanobody Targeting the Paraflagellar Rod Protein of Trypanosomes. PLoS ONE, 2014, 9, e115893.	1.1	26
69	Iron Homeostasis and <i>Trypanosoma brucei </i> Associated Immunopathogenicity Development: A Battle/Quest for Iron. BioMed Research International, 2015, 2015, 1-15.	0.9	26
70	African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiology, 2009, 4, 1075-1087.	1.0	25
71	IL-27 Signaling Is Crucial for Survival of Mice Infected with African Trypanosomes via Preventing Lethal Effects of CD4+ T Cells and IFN-γ. PLoS Pathogens, 2015, 11, e1005065.	2.1	25
72	Interleukinâ€12p70–Dependent Interferonâ€Î³ Production Is Crucial for Resistance in African Trypanosomiasis. Journal of Infectious Diseases, 2007, 196, 1253-1260.	1.9	24

#	Article	IF	Citations
73	A Conserved Flagellar Pocket Exposed High Mannose Moiety Is Used by African Trypanosomes as a Host Cytokine Binding Molecule. Journal of Biological Chemistry, 2001, 276, 33458-33464.	1.6	22
74	Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS ONE, 2021, 16, e0239792.	1.1	21
75	Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. PLoS Pathogens, 2021, 17, e1010026.	2.1	21
76	Utilizing Nanobody Technology to Target Non-Immunodominant Domains of VAR2CSA. PLoS ONE, 2014, 9, e84981.	1.1	20
77	MIF-Mediated Hemodilution Promotes Pathogenic Anemia in Experimental African Trypanosomosis. PLoS Pathogens, 2016, 12, e1005862.	2.1	20
78	The Enrichment of <i>Histomonas meleagridis </i> and Its Pathogen-Specific Protein Analysis: A First Step to Shed Light on Its Virulence. Avian Diseases, 2016, 60, 628-636.	0.4	20
79	Monovinyl Sulfone βâ€Cyclodextrin. A Flexible Drug Carrier System. ChemMedChem, 2014, 9, 383-389.	1.6	19
80	IFNâ€Ĵ³ mediates early Bâ€cell loss in experimental African trypanosomosis. Parasite Immunology, 2015, 37, 479-484.	0.7	18
81	<i>Trypanosoma brucei brucei</i> causes a rapid and persistent influx of neutrophils in the spleen of infected mice. Parasite Immunology, 2019, 41, e12664.	0.7	18
82	Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Frontiers in Immunology, 2017, 8, 724.	2.2	17
83	Development of a recombinase polymerase amplification lateral flow assay for the detection of active Trypanosoma evansi infections. PLoS Neglected Tropical Diseases, 2020, 14, e0008044.	1.3	16
84	Insufficiently Defined Genetic Background Confounds Phenotypes in Transgenic Studies As Exemplified by Malaria Infection in Tlr9 Knockout Mice. PLoS ONE, 2011, 6, e27131.	1.1	16
85	Interleukinâ€12p70 Deficiency Increases Survival and Diminishes Pathology inTrypanosoma congolenseInfection. Journal of Infectious Diseases, 2008, 198, 1284-1291.	1.9	15
86	Affinity Is an Important Determinant of the Anti-Trypanosome Activity of Nanobodies. PLoS Neglected Tropical Diseases, 2012, 6, e1902.	1.3	15
87	Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity. PLoS ONE, 2012, 7, e47233.	1.1	15
88	Nitric oxide production by endotoxin preparations in TLR4-deficient mice. Nitric Oxide - Biology and Chemistry, 2014, 36, 36-43.	1.2	15
89	Structural basis for the high specificity of a Trypanosoma congolense immunoassay targeting glycosomal aldolase. PLoS Neglected Tropical Diseases, 2017, 11, e0005932.	1.3	15
90	DNA detection of Trypanosoma evansi: Diagnostic validity of a new assay based on loop-mediated isothermal amplification (LAMP). Veterinary Parasitology, 2018, 250, 1-6.	0.7	14

#	Article	IF	Citations
91	The Trypanosomal Transferrin Receptor of Trypanosoma Bruceiâ€"A Review. Tropical Medicine and Infectious Disease, 2019, 4, 126.	0.9	14
92	Selective pressure can influence the resistance of Trypanosoma congolense to normal human serum. Experimental Parasitology, 2002, 102, 61-65.	0.5	12
93	Reprint of: The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 858-867.	0.8	12
94	A Critical Blimp-1-Dependent IL-10 Regulatory Pathway in T Cells Protects From a Lethal Pro-inflammatory Cytokine Storm During Acute Experimental Trypanosoma brucei Infection. Frontiers in Immunology, 2020, 11, 1085.	2.2	12
95	Coadministration of protoxin <scp>C</scp> ry1 <scp>A</scp> c from <i><scp>B</scp>acillus thuringiensis</i> with metacestode extract confers protective immunity to murine cysticercosis. Parasite Immunology, 2014, 36, 266-270.	0.7	10
96	An Unbiased Immunization Strategy Results in the Identification of Enolase as a Potential Marker for Nanobody-Based Detection of Trypanosoma evansi. Vaccines, 2020, 8, 415.	2.1	10
97	Detrimental Effect of <i>Trypanosoma brucei brucei</i> Infection on Memory B Cells and Host Ability to Recall Protective B-cell Responses. Journal of Infectious Diseases, 2022, 226, 528-540.	1.9	10
98	Maintenance of B cells during chronic murine <i>Trypanosoma brucei gambiense</i> infection. Parasite Immunology, 2016, 38, 642-647.	0.7	9
99	Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens, 2021, 10, 679.	1.2	9
100	Experimental African Trypanosome Infection by Needle Passage or Natural Tsetse Fly Challenge Thwarts the Development of Collagen-Induced Arthritis in DBA/1 Prone Mice via an Impairment of Antigen Specific B Cell Autoantibody Titers. PLoS ONE, 2015, 10, e0130431.	1.1	9
101	The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples. Pathogens, 2021, 10, 1050.	1.2	8
102	Improving the yield of recalcitrant Nanobodies \hat{A}^{\otimes} by simple modifications to the standard protocol. Protein Expression and Purification, 2021, 185, 105906.	0.6	8
103	STAT6 Mediates Footpad Immunopathology in the Absence of IL-12p40 Following Infection of Susceptible BALB/c Mice With Leishmania major. Frontiers in Immunology, 2018, 9, 503.	2.2	7
104	Using detergent-enhanced LAMP for African trypanosome detection in human cerebrospinal fluid and implications for disease staging. PLoS Neglected Tropical Diseases, 2019, 13, e0007631.	1.3	7
105	Curative drug treatment of trypanosomosis leads to the restoration of Bâ€cell lymphopoiesis and splenic Bâ€cell compartments. Parasite Immunology, 2015, 37, 485-491.	0.7	6
106	Identification of a tryptophan-like epitope borne by the variable surface glycoprotein (VSG) of African trypanosomes. Experimental Parasitology, 2007, 115, 173-180.	0.5	5
107	Production, purification and crystallization of atrans-sialidase from Trypanosoma vivax. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 577-585.	0.4	5
108	Hepatocyte-derived IL-10 plays a crucial role in attenuating pathogenicity during the chronic phase of T. congolense infection. PLoS Pathogens, 2020, 16, e1008170.	2.1	5

#	Article	IF	CITATIONS
109	Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget, 2017, 8, 52016-52025.	0.8	5
110	The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. Open Research Europe, 0, 2, 67.	2.0	5
111	African trypanosomiasis: New insights for disease control. Parasitology, 2010, 137, 1975-1975.	0.7	4
112	Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya. Journal of Veterinary Diagnostic Investigation, 2016, 28, 589-594.	0.5	4
113	Coinfection With Trypanosoma brucei Confers Protection Against Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 2855.	2.2	4
114	African Trypanosomosis Obliterates DTPa Vaccine-Induced Functional Memory So That Post-Treatment Bordetella pertussis Challenge Fails to Trigger a Protective Recall Response. Vaccines, 2021, 9, 603.	2.1	4
115	T. brucei infections abrogate diverse plasma cell-mediated effector B cell responses, independently of their specificity, affinity and host genetic background. PLoS Neglected Tropical Diseases, 2020, 14, e0008358.	1.3	3
116	BCG mediated protection against M. tuberculosis is sustained post malaria infection independent of parasite virulence. Immunology, $2021, \ldots$	2.0	3
117	The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Frontiers in Immunology, 2022, 13, 865395.	2.2	3
118	Detection of Pathogen-Specific Antibodies by Loop-Mediated Isothermal Amplification. Vaccine Journal, 2015, 22, 374-380.	3.2	2
119	<i>In vivo</i> characterization of two additional <i>Leishmania donovani</i> strains using the murine and hamster model. Parasite Immunology, 2016, 38, 290-302.	0.7	2
120	Structural and kinetic characterization of Trypanosoma congolense pyruvate kinase. Molecular and Biochemical Parasitology, 2020, 236, 111263.	0.5	1
121	Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice. Methods in Molecular Biology, 2020, 2116, 721-738.	0.4	1
122	Automatic Detection of Trypanosomosis in Thick Blood Smears Using Image Pre-processing and Deep Learning. Lecture Notes in Computer Science, 2021, , 254-266.	1.0	0
123	Adaptive Immunity and Trypanosomiasis-Driven B-Cell Destruction. , 2014, , 115-138.		0
124	Immunology of African Trypanosomiasis. , 2016, , 101-107.		0
125	Isolation of Trypanosoma brucei brucei Infection-Derived Splenic Marginal Zone B Cells Based on CD1dHigh/B220High Surface Expression in a Two-Step MACS-FACS Approach. Methods in Molecular Biology, 2020, 2116, 739-753.	0.4	0
126	Title is missing!. , 2020, 14, e0008044.		0

#	Article	IF	CITATIONS
127	Title is missing!. , 2020, 14, e0008044.		O
128	Title is missing!. , 2020, 14, e0008044.		0
129	Title is missing!. , 2020, 14, e0008044.		O
130	Title is missing!. , 2020, 16, e1008170.		0
131	Title is missing!. , 2020, 16, e1008170.		O
132	Title is missing!. , 2020, 16, e1008170.		0
133	Title is missing!. , 2020, 16, e1008170.		O