Dario Pisignano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8980342/publications.pdf Version: 2024-02-01

		38742	42399
311	11,176	50	92
papers	citations	h-index	g-index
315	315	315	15149
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications, 2013, 4, 1633.	12.8	1,001
2	Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromolecular Materials and Engineering, 2013, 298, 504-520.	3.6	750
3	Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on A Chip, 2008, 8, 1632.	6.0	589
4	Drop-based microfluidic devices for encapsulation of single cells. Lab on A Chip, 2008, 8, 1110.	6.0	470
5	Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology, 2006, 17, 3234-3238.	2.6	242
6	Patterning of light-emitting conjugated polymer nanofibres. Nature Nanotechnology, 2008, 3, 614-619.	31.5	180
7	Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors. PLoS ONE, 2011, 6, e26211.	2.5	178
8	Laser Emission from Electrospun Polymer Nanofibers. Small, 2009, 5, 562-566.	10.0	167
9	Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Progress in Polymer Science, 2015, 43, 48-95.	24.7	152
10	Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 13575-13583.	8.0	148
11	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	7.3	132
12	Nanotopographic Control of Neuronal Polarity. Nano Letters, 2011, 11, 505-511.	9.1	125
13	Lightâ€Emitting Electrospun Nanofibers for Nanophotonics and Optoelectronics. Macromolecular Materials and Engineering, 2013, 298, 487-503.	3.6	115
14	Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules. Applied Physics Letters, 2003, 82, 334-336.	3.3	112
15	Neuronal polarity selection by topography-induced focal adhesion control. Biomaterials, 2010, 31, 4682-4694.	11.4	107
16	Amplified spontaneous emission and efficient tunable laser emission from a substituted thiophene-based oligomer. Applied Physics Letters, 2002, 81, 3534-3536.	3.3	103
17	Photocontrolled Variations in the Wetting Capability of Photochromic Polymers Enhanced by Surface Nanostructuring. Langmuir, 2006, 22, 2329-2333.	3.5	103
18	Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. ACS Nano, 2015, 9, 10047-10054.	14.6	96

#	Article	IF	CITATIONS
19	Local Mechanical Properties of Electrospun Fibers Correlate to Their Internal Nanostructure. Nano Letters, 2013, 13, 5056-5062.	9.1	94
20	Acoustic-counterflow microfluidics by surface acoustic waves. Applied Physics Letters, 2008, 92, .	3.3	90
21	Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomedical Materials (Bristol), 2012, 7, 035010.	3.3	84
22	Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Physical Review B, 2005, 72, .	3.2	83
23	Room-Temperature Nanoimprint Lithography of Non-thermoplastic Organic Films. Advanced Materials, 2004, 16, 525-529.	21.0	82
24	Optical response and emission waveguiding in rubrene crystals. Physical Review B, 2007, 75, .	3.2	81
25	Cooperativity in the Enhanced Piezoelectric Response of Polymer Nanowires. Advanced Materials, 2014, 26, 7574-7580.	21.0	81
26	Capillary filling in patterned channels. Physical Review E, 2008, 77, 067301.	2.1	80
27	Multilevel, Room-Temperature Nanoimprint Lithography for Conjugated Polymer-Based Photonics. Nano Letters, 2005, 5, 1915-1919.	9.1	77
28	Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83, 2545-2547.	3.3	76
29	Photoswitchable Organic Nanofibers. Advanced Materials, 2008, 20, 314-318.	21.0	74
30	Strelitzia reginae Leaf as a Natural Template for Anisotropic Wetting and Superhydrophobicity. Langmuir, 2012, 28, 5312-5317.	3.5	74
31	Polymer nanogenerators: Opportunities and challenges for largeâ€scale applications. Journal of Applied Polymer Science, 2018, 135, 45674.	2.6	73
32	Rotational dynamics of optically trapped nanofibers. Optics Express, 2010, 18, 822.	3.4	69
33	A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells. PLoS ONE, 2014, 9, e87496.	2.5	69
34	Electrospun dye-doped polymer nanofibers emitting in the near infrared. Applied Physics Letters, 2007, 90, 143115.	3.3	67
35	Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale, 2013, 5, 11637.	5.6	66
36	Combined Nano―and Microâ€Scale Topographic Cues for Engineered Vascular Constructs by Electrospinning and Imprinted Microâ€Patterns. Small, 2014, 10, 2439-2450.	10.0	65

#	Article	IF	CITATIONS
37	Electrospun light-emitting nanofibers as excitation source in microfluidic devices. Lab on A Chip, 2009, 9, 2851.	6.0	64
38	Advances in Medical Applications of Additive Manufacturing. Engineering, 2020, 6, 1222-1231.	6.7	64
39	Bright Light Emission and Waveguiding in Conjugated Polymer Nanofibers Electrospun from Organic Salt Added Solutions. Macromolecules, 2013, 46, 5935-5942.	4.8	63
40	Solid-State Supramolecular Organization, Established Directly from Powder Diffraction Data, and Photoluminescence Efficiency of Rigid-Core Oligothiophene-S,S-dioxides. Journal of the American Chemical Society, 2003, 125, 12277-12283.	13.7	62
41	Polydimethylsiloxane–LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels. Lab on A Chip, 2008, 8, 1557.	6.0	61
42	Silicateins—A Novel Paradigm in Bioinorganic Chemistry: Enzymatic Synthesis of Inorganic Polymeric Silica. Chemistry - A European Journal, 2013, 19, 5790-5804.	3.3	61
43	Transforming colloidal Cs ₄ PbBr ₆ nanocrystals with poly(maleic) Tj ETQq1 1 0.784314 intermediate heterostructures. Chemical Science, 2020, 11, 3986-3995.	rgBT /Ove 7.4	rlock 10 Tf <mark>5(</mark> 59
44	Optical Anisotropy in Single Light-Emitting Polymer Nanofibers. Journal of Physical Chemistry C, 2011, 115, 20399-20405.	3.1	58
45	Twoâ€Photon Continuous Flow Lithography. Advanced Materials, 2012, 24, 1304-1308.	21.0	58
46	Patterning polyacrylamide hydrogels by soft lithography. Nanotechnology, 2005, 16, S165-S170.	2.6	55
47	Dielectric tensor of tetracene single crystals: The effect of anisotropy on polarized absorption and emission spectra. Journal of Chemical Physics, 2008, 128, 154709.	3.0	55
48	Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors. Macromolecular Materials and Engineering, 2017, 302, 1600569.	3.6	55
49	New Branched Thiophene-Based Oligomers for Bright Organic Light-Emitting Devices. Advanced Materials, 2003, 15, 2060-2063.	21.0	54
50	Single light-emitting polymer nanofiber field-effect transistors. Nanoscale, 2010, 2, 2217.	5.6	53
51	Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89, 201105.	3.3	51
52	A nanophotonic laser on a graph. Nature Communications, 2019, 10, 226.	12.8	51
53	Models of polymer solutions in electrified jets and solution blowing. Reviews of Modern Physics, 2020, 92, .	45.6	51
54	Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays. Lab on A Chip, 2010, 10, 1997.	6.0	50

#	Article	IF	CITATIONS
55	Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. Advanced Science, 2020, 7, 2000735.	11.2	49
56	Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter, 2010, 6, 1668.	2.7	48
57	Selfâ€assembled CdSe/CdS nanorod microâ€lasers fabricated from solution by capillary jet deposition. Laser and Photonics Reviews, 2012, 6, 678-683.	8.7	47
58	Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules, 2021, 22, 3084-3098.	5.4	46
59	A cryptochromeâ€based photosensory system in the siliceous sponge <i>Suberites domuncula</i> (Demospongiae). FEBS Journal, 2010, 277, 1182-1201.	4.7	45
60	Light-emitting nanocomposite CdS–polymer electrospun fibres via in situ nanoparticle generation. Nanoscale, 2011, 3, 4234.	5.6	44
61	Electrically Tunable Organic Distributed Feedback Lasers Embedding Nonlinear Optical Molecules. Advanced Materials, 2012, 24, OP221-5.	21.0	44
62	Distributed Feedback Imprinted Electrospun Fiber Lasers. Advanced Materials, 2014, 26, 6542-6547.	21.0	44
63	Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Cellular and Molecular Life Sciences, 2009, 66, 537-552.	5.4	43
64	Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors. Applied Physics Letters, 2006, 88, 121110.	3.3	42
65	Physically Transient Photonics: Random <i>versus</i> Distributed Feedback Lasing Based on Nanoimprinted DNA. ACS Nano, 2014, 8, 10893-10898.	14.6	42
66	Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components. Journal of the American Chemical Society, 2014, 136, 14245-14254.	13.7	42
67	GBr6NL: A generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation. Journal of Chemical Physics, 2007, 126, 195102.	3.0	41
68	Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials, 2004, 25, 1349-1353.	11.4	40
69	Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2006, 89, 131109.	3.3	40
70	Polarized superradiance from delocalized exciton transitions in tetracene single crystals. Physical Review B, 2010, 81, .	3.2	40
71	Bright oligothiophene-based light emitting diodes. Synthetic Metals, 2003, 139, 671-673.	3.9	39
72	Soft molding lithography of conjugated polymers. Applied Physics Letters, 2004, 84, 1365-1367.	3.3	39

#	Article	IF	CITATIONS
73	Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling. Europhysics Letters, 2008, 84, 44003.	2.0	39
74	Circularly Polarized Laser with Chiral Nematic Cellulose Nanocrystal Cavity. ACS Nano, 2021, 15, 8753-8760.	14.6	39
75	Interaction Scheme and Temperature Behavior of Energy Transfer in a Lightâ€Emitting Inorganicâ€Organic Composite System. Advanced Functional Materials, 2008, 18, 751-757.	14.9	37
76	CdS–Polymer Nanocomposites and Lightâ€Emitting Fibers by In Situ Electronâ€Beam Synthesis and Lithography. Advanced Materials, 2012, 24, 5320-5326.	21.0	37
77	Full color control and white emission from conjugated polymer nanofibers. Applied Physics Letters, 2009, 94, .	3.3	36
78	Printing Flowers? Custom-Tailored Photonic Cellulose Films with Engineered Surface Topography. Matter, 2019, 1, 988-1000.	10.0	36
79	Interplay between Shape and Roughness in Early-Stage Microcapillary Imbibition. Langmuir, 2012, 28, 2596-2603.	3.5	35
80	Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter, 2013, 9, 5529.	2.7	35
81	Controlling spontaneous surface structuring of azobenzene-containing polymers for large-scale nano-lithography of functional substrates. Applied Physics Letters, 2013, 102, .	3.3	35
82	White emission from organic light emitting diodes based on energy down-convertion mechanisms. Synthetic Metals, 2003, 139, 675-677.	3.9	34
83	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	14.9	34
84	Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore. Journal of Physical Chemistry C, 2011, 115, 13566-13570.	3.1	33
85	Modal Coupling of Single Photon Emitters Within Nanofiber Waveguides. ACS Nano, 2016, 10, 6125-6130.	14.6	33
86	Polymer nanofibers by soft lithography. Applied Physics Letters, 2005, 87, 123109.	3.3	32
87	A methodology to orient carbon nanotubes in a thermosetting matrix. Composites Science and Technology, 2014, 96, 47-55.	7.8	32
88	Amplified spontaneous emission in quaterthiophene single crystals. Applied Physics Letters, 2008, 92, .	3.3	31
89	Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology, 2010, 21, 215304.	2.6	31
90	Conformational Evolution of Elongated Polymer Solutions Tailors the Polarization of Light-Emission from Organic Nanofibers. Macromolecules, 2014, 47, 4704-4710.	4.8	31

#	Article	IF	CITATIONS
91	Electrically controlled white laser emission through liquid crystal/polymer multiphases. Light: Science and Applications, 2020, 9, 19.	16.6	31
92	Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography. Microelectronic Engineering, 2003, 67-68, 169-174.	2.4	30
93	Role of doping concentration on the competition between amplified spontaneous emission and nonradiative energy transfer in blends of conjugated polymers. Physical Review B, 2006, 73, .	3.2	30
94	Controlled Atmosphere Electrospinning of Organic Nanofibers with Improved Light Emission and Waveguiding Properties. Macromolecules, 2015, 48, 7803-7809.	4.8	30
95	PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 151-161.	2.7	30
96	Threading through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers. ACS Nano, 2016, 10, 8012-8018.	14.6	30
97	When nanocellulose meets diffraction grating: freestanding photonic paper with programmable optical coupling. Materials Horizons, 2020, 7, 511-519.	12.2	30
98	Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14, 1951.	3.4	29
99	Axial optical trapping efficiency through a dielectric interface. Physical Review E, 2007, 76, 061917.	2.1	29
100	Morphology of Sponge Spicules: Silicatein a Structural Protein for Bioâ€ S ilica Formation. Advanced Engineering Materials, 2010, 12, B422.	3.5	29
101	Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 2015, 11, 3424-3431.	2.7	29
102	Reversibly Photo-Responsive Polymer Surfaces for Controlled Wettability. Journal of Adhesion Science and Technology, 2008, 22, 1853-1868.	2.6	28
103	Integrated bottom-up and top-down soft lithographies and microfabrication approaches to multifunctional polymers. Journal of Materials Chemistry C, 2013, 1, 7663.	5.5	28
104	Spatially Confined CdS NCs in Situ Synthesis through Laser Irradiation of Suitable Unimolecular Precursor-Doped Polymer. Journal of Physical Chemistry C, 2012, 116, 25119-25125.	3.1	27
105	Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods. Analytical and Bioanalytical Chemistry, 2016, 408, 1357-1364.	3.7	27
106	High-Temperature Microfluidic Lithography. Advanced Materials, 2002, 14, 1565-1567.	21.0	26
107	Optical Gain from the Open Form of a Photochromic Molecule in the Solid State. Journal of Physical Chemistry B, 2006, 110, 4506-4509.	2.6	26
108	Two-photon patterning of a polymer containing Y-shaped azochromophores. Applied Physics Letters, 2009, 94, 011115.	3.3	26

#	Article	IF	CITATIONS
109	Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals. Journal of Materials Chemistry, 2012, 22, 9787.	6.7	26
110	Optical Gain in the Near Infrared by Light‣mitting Electrospun Fibers. Advanced Functional Materials, 2014, 24, 5225-5231.	14.9	26
111	All-optical switching in dye-doped DNA nanofibers. Journal of Materials Chemistry C, 2019, 7, 170-176.	5.5	26
112	Energy Dissipation and Asymmetric Excitation in Hybrid Waveguides for Routing and Coloring. Journal of Physical Chemistry Letters, 2021, 12, 7034-7040.	4.6	26
113	Core–Shell Electrospun Fibers Encapsulating Chromophores or Luminescent Proteins for Microscopically Controlled Molecular Release. Molecular Pharmaceutics, 2016, 13, 729-736.	4.6	25
114	Study of the relaxation behaviour of a tri-epoxy compound in the supercooled and glassy state by broadband dielectric spectroscopy. Journal of Physics Condensed Matter, 2001, 13, 4405-4419.	1.8	24
115	Amplified spontaneous emission in the near infrared from a dye-doped polymer thin film. Synthetic Metals, 2004, 143, 305-307.	3.9	24
116	Smart photochromic gratings with switchable wettability realized by green-light interferometry. Applied Physics Letters, 2006, 88, 203124.	3.3	24
117	Soft Nanopatterning on Lightâ€Emitting Inorganic–Organic Composites. Advanced Functional Materials, 2008, 18, 2692-2698.	14.9	24
118	Effect of finite terms on the truncation error of Mie series. Optics Letters, 2012, 37, 2418.	3.3	24
119	Diverse Regimes of Mode Intensity Correlation in Nanofiber Random Lasers through Nanoparticle Doping. ACS Photonics, 2018, 5, 1026-1033.	6.6	24
120	Planar organic photonic crystals fabricated by soft lithography. Nanotechnology, 2004, 15, 766-770.	2.6	23
121	Reversible Diffraction Efficiency of Photochromic Polymer Gratings Related to Photoinduced Dimensional Changes. Advanced Functional Materials, 2008, 18, 1617-1623.	14.9	23
122	Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores. Journal of Applied Physics, 2010, 107, .	2.5	23
123	Random lasing in an organic lightâ€emitting crystal and its interplay with vertical cavity feedback. Laser and Photonics Reviews, 2014, 8, 785-791.	8.7	23
124	The Secretome Derived From Mesenchymal Stromal Cells Cultured in a Xeno-Free Medium Promotes Human Cartilage Recovery in vitro. Frontiers in Bioengineering and Biotechnology, 2020, 8, 90.	4.1	23
125	Evagination of Cells Controls Bio-Silica Formation and Maturation during Spicule Formation in Sponges. PLoS ONE, 2011, 6, e20523.	2.5	23
	Amplified Spontaneous Emission and Waveguiding Properties of the Colored Merocyanine Form of		

126

#	Article	IF	CITATIONS
127	Generalized ellipsometry and dielectric tensor of rubrene single crystals. Journal of Applied Physics, 2007, 102, .	2.5	22
128	Flashing light signaling circuit in sponges: Endogenous light generation after tissue ablation in <i>Suberites domuncula</i> . Journal of Cellular Biochemistry, 2010, 111, 1377-1389.	2.6	22
129	Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. Biomicrofluidics, 2010, 4, .	2.4	22
130	Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer cale Spatial Resolution. Small, 2015, 11, 6417-6424.	10.0	22
131	Computational homogenization of fibrous piezoelectric materials. Computational Mechanics, 2015, 55, 983-998.	4.0	22
132	Shear Piezoelectricity in Poly(vinylidenefluorideâ€ <i>co</i> â€ŧrifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energyâ€Harvesting Nanostructures. Advanced Materials, 2016, 28, 7633-7639.	21.0	22
133	Highly sticky surfaces made by electrospun polymer nanofibers. RSC Advances, 2017, 7, 5836-5842.	3.6	22
134	First-order imprinted organic distributed feedback lasers. Synthetic Metals, 2005, 153, 237-240.	3.9	21
135	Polarization splitting in organic-based microcavities working in the strong coupling regime. Organic Electronics, 2007, 8, 114-119.	2.6	21
136	Rapid nested-PCR for tyrosinase gene detection on chip. Biosensors and Bioelectronics, 2011, 26, 2711-2715.	10.1	21
137	Flexible organic field-effect transistors based on electrospun conjugated polymer nanofibers with high bending stability. Organic Electronics, 2014, 15, 1056-1061.	2.6	21
138	The sponge silicatein-interacting protein silintaphin-2 blocks calcite formation of calcareous sponge spicules at the vaterite stage. RSC Advances, 2014, 4, 2577-2585.	3.6	21
139	Tuning polymorphism in 2,3-thienoimide capped oligothiophene based field-effect transistors by implementing vacuum and solution deposition methods. Journal of Materials Chemistry C, 2018, 6, 5601-5608.	5.5	21
140	Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response. Nature Communications, 2020, 11, 5991.	12.8	21
141	Unusual Red Light Emission from Nonmetallic Cu ₂ Te Microdisk for Laser and SERS Applications. Advanced Optical Materials, 2022, 10, 2101976.	7.3	21
142	Conformation of Microcontact-Printed Proteins by Atomic Force Microscopy Molecular Sizing. Langmuir, 2005, 21, 5154-5158.	3.5	20
143	Polarized Absorption, Spontaneous and Stimulated Blue Light Emission of Jâ€ŧype Tetraphenylbutadiene Monocrystals. ChemPhysChem, 2010, 11, 429-434.	2.1	20
144	Effects of orthogonal rotating electric fields on electrospinning process. Physics of Fluids, 2017, 29, .	4.0	20

#	Article	IF	CITATIONS
145	Combination of microstructuring and laser-light irradiation for the reversible wettability of photosensitised polymer surfaces. Applied Physics A: Materials Science and Processing, 2006, 83, 351-356.	2.3	19
146	Microfluidic Rheology of Non-Newtonian Liquids. Analytical Chemistry, 2007, 79, 5856-5861.	6.5	19
147	Microdroplet-based multiplex PCR on chip to detect foodborne bacteria producing biogenic amines. Food Microbiology, 2013, 35, 10-14.	4.2	19
148	JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning. Computer Physics Communications, 2015, 197, 227-238.	7.5	19
149	Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets. Physical Review E, 2018, 97, 033308.	2.1	19
150	An electrospun fiber phototransistor by the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene]. Applied Physics Letters, 2011, 98, .	3.3	18
151	Optical properties of in-vitro biomineralised silica. Scientific Reports, 2012, 2, 607.	3.3	18
152	Effects of non-linear rheology on electrospinning process: A model study. Mechanics Research Communications, 2014, 61, 41-46.	1.8	18
153	Nanoparticle-doped electrospun fiber random lasers with spatially extended light modes. Optics Express, 2017, 25, 24604.	3.4	18
154	Photocontrolled wettability changes in polymer microchannels doped with photochromic molecules. Applied Physics Letters, 2007, 91, 113113.	3.3	17
155	Hierarchical assembly of light-emitting polymer nanofibers in helical morphologies. Applied Physics Letters, 2009, 95, .	3.3	17
156	Enhanced charge-carrier mobility in polymer nanofibers realized by solvent-resistant soft nanolithography. Journal of Materials Chemistry, 2012, 22, 18051.	6.7	17
157	Electrospun Amplified Fiber Optics. ACS Applied Materials & amp; Interfaces, 2015, 7, 5213-5218.	8.0	17
158	Electrospun Filaments Embedding Bioactive Glass Particles with Ion Release and Enhanced Mineralization. Nanomaterials, 2019, 9, 182.	4.1	17
159	On the evaluation of output voltages for quantifying the performance of pyroelectric energy harvesters. Nano Energy, 2021, 86, 106045.	16.0	17
160	Emission properties of printed organic semiconductor lasers. Optics Letters, 2005, 30, 260.	3.3	16
161	Registration accuracy in multilevel soft lithography. Nanotechnology, 2007, 18, 175302.	2.6	16
162	Ultraviolet-based bonding for perfluoropolyether low aspect-ratio microchannels and hybrid devices. Lab on A Chip, 2008, 8, 1394.	6.0	16

#	Article	IF	CITATIONS
163	Rapid prototyping encapsulation for polymer light-emitting lasers. Applied Physics Letters, 2009, 94, .	3.3	16
164	Biosilica Electricallyâ€Insulating Layers by Soft Lithographyâ€Assisted Biomineralisation with Recombinant Silicatein. Advanced Materials, 2011, 23, 4674-4678.	21.0	16
165	Enhanced emission efficiency in electrospun polyfluorene copolymer fibers. Applied Physics Letters, 2013, 102, 211911.	3.3	16
166	Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources. ACS Applied Materials & Interfaces, 2015, 7, 21907-21912.	8.0	16
167	Anisotropic Conjugated Polymer Chain Conformation Tailors the Energy Migration in Nanofibers. Journal of the American Chemical Society, 2016, 138, 15497-15505.	13.7	16
168	Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting polymer nanofibers. Nanoscale, 2018, 10, 21748-21754.	5.6	16
169	Heterogeneous Random Laser with Switching Activity Visualized by Replica Symmetry Breaking Maps. ACS Photonics, 2021, 8, 376-383.	6.6	16
170	Optically controlled liquid flow in initially prohibited elastomeric nanocomposite micro-paths. RSC Advances, 2012, 2, 9543.	3.6	15
171	Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow. Journal of Physical Chemistry A, 2016, 120, 4884-4892.	2.5	15
172	Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3058-3067.	3.1	15
173	Laser Systems and Networks with Organic Nanowires and Nanofibers. Advanced Optical Materials, 2019, 7, 1900192.	7.3	15
174	Amplified spontaneous emission from a conjugated polymer undergone a high-temperature lithography cycle. Applied Physics Letters, 2005, 86, 261104.	3.3	14
175	Directed Functionalization Tailors the Polarized Emission and Waveguiding Properties of Anthracene-Based Molecular Crystals. Chemistry of Materials, 2019, 31, 1775-1783.	6.7	14
176	Influence of the end groups on dynamics of propylene glycol oligomers studied by wideband dielectric spectroscopy. Journal of Non-Crystalline Solids, 2002, 307-310, 238-245.	3.1	13
177	Flexible organic distributed feedback structures by soft lithography. Synthetic Metals, 2003, 137, 1057-1058.	3.9	13
178	Controlling non-radiative energy transfer in organic binary blends: a route towards colour tunability and white emission from single-active-layer light-emitting devices. Journal Physics D: Applied Physics, 2003, 36, 2483-2486.	2.8	13
179	Rapid Soft Lithography by Bottom-Up Enhanced Capillarity. Langmuir, 2004, 20, 4802-4804.	3.5	13
180	Microfluidic Motion for a Direct Investigation of the Structural Dynamics of Glass-Forming Liquids. Analytical Chemistry, 2005, 77, 591-595.	6.5	13

#	Article	IF	CITATIONS
181	Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers. Applied Physics Letters, 2006, 89, 121111.	3.3	13
182	Organic-based distributed feedback lasers by direct electron-beam lithography on conjugated polymers. Applied Physics Letters, 2007, 91, 101110.	3.3	13
183	Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials, 2016, 94, 57-69.	11.4	13
184	Nanowireâ€Intensified Metalâ€Enhanced Fluorescence in Hybrid Polymerâ€Plasmonic Electrospun Filaments. Small, 2018, 14, e1800187.	10.0	13
185	Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS Applied Materials & Interfaces, 2020, 12, 26320-26329.	8.0	13
186	Emission properties and solid-state aggregation in poly(fluorene–thiophene-S,S-dioxide) and in its model oligomer. Synthetic Metals, 2003, 138, 289-293.	3.9	12
187	Propagation properties and self-waveguided fluorescence emission in conjugated molecular solids. Organic Electronics, 2006, 7, 561-567.	2.6	12
188	Corner liquid imbibition during capillary penetration in lithographically made microchannels. Applied Physics Letters, 2009, 94, 171901.	3.3	12
189	Study of optical properties of electrospun light-emitting polymer fibers. Superlattices and Microstructures, 2010, 47, 145-149.	3.1	12
190	Suppression of Low-Frequency Electronic Noise in Polymer Nanowire Field-Effect Transistors. Nano Letters, 2015, 15, 7245-7252.	9.1	12
191	Dynamic mesh refinement for discrete models of jet electro-hydrodynamics. Journal of Computational Science, 2016, 17, 325-333.	2.9	12
192	Electrostatic Mechanophores in Tuneable Lightâ€Emitting Piezopolymer Nanowires. Advanced Materials, 2017, 29, 1701031.	21.0	12
193	Lineageâ€5pecific Commitment of Stem Cells with Organic and Graphene Oxide–Functionalized Nanofibers. Advanced Functional Materials, 2019, 29, 1806694.	14.9	12
194	Full organic distributed feedback cavities based on a soluble electroluminescent oligothiophene. Physical Review B, 2004, 70, .	3.2	11
195	Soft Nanolithography by Polymer Fibers. Advanced Functional Materials, 2011, 21, 1140-1145.	14.9	11
196	Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag. Mechanics Research Communications, 2015, 69, 97-102.	1.8	11
197	Neuregulin 1 functionalization of organic fibers for Schwann cell guidance. Nanotechnology, 2017, 28, 155303.	2.6	11
198	Dye Stabilization and Wavelength Tunability in Lasing Fibers Based on DNA. Advanced Optical Materials, 2020, 8, 2001039.	7.3	11

#	Article	IF	CITATIONS
199	Nanoimprint lithography of chromophore molecules under high-vacuum conditions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 185.	1.6	10
200	Effects of intermolecular interactions on photoluminescence efficiency of crystalline thienylene-S,S-dioxide molecular semiconductors. Organic Electronics, 2004, 5, 129-134.	2.6	10
201	Polarization mode splitting in monolithic polymer microcavities. Applied Physics Letters, 2005, 87, 031103.	3.3	10
202	Low-loss and highly polarized emission from planar polymer waveguides. Optics Letters, 2006, 31, 1429.	3.3	10
203	Polymer to polymer to polymer pattern transfer: Multiple molding for 100â€,nm scale lithography. Journal of Vacuum Science & Technology B, 2006, 24, 807.	1.3	10
204	Monolithic vertical microcavities based on tetracene single crystals. Applied Physics Letters, 2008, 92, 063301.	3.3	10
205	Ultrathin Fibers from Electrospinning Experiments under Driven Fast-Oscillating Perturbations. Physical Review Applied, 2014, 2, .	3.8	10
206	Interplay of Stimulated Emission and Fluorescence Resonance Energy Transfer in Electrospun Light-Emitting Fibers. Journal of Physical Chemistry C, 2018, 122, 762-769.	3.1	10
207	Tailoring optical properties and stimulated emission in nanostructured polythiophene. Scientific Reports, 2019, 9, 7370.	3.3	10
208	Assembly of Pt Nanoparticles on Graphitized Carbon Nanofibers as Hierarchically Structured Electrodes. ACS Applied Nano Materials, 2020, 3, 9880-9888.	5.0	10
209	Nanobiotechnology: Soft Lithography. Progress in Molecular and Subcellular Biology, 2009, 47, 341-358.	1.6	10
210	Rigid organic molds for nanoimprint lithography by replica molding of high glass transition temperature polymers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1759.	1.6	9
211	Two Dimensional Patterning of Fluorescent Proteins in Hydrogels. Langmuir, 2006, 22, 29-31.	3.5	9
212	Controlling the reversible wetting capability of smart photochromic-polymer surfaces by micro patterning. Applied Physics A: Materials Science and Processing, 2008, 91, 397-401.	2.3	9
213	Subâ€50â€nm Conjugated Polymer Dots by Nanoprinting. Small, 2008, 4, 1894-1899.	10.0	9
214	Nanoparticle image velocimetry at topologically structured surfaces. Biomicrofluidics, 2009, 3, 44111.	2.4	9
215	Rolling particle lithography by soft polymer microparticles. Soft Matter, 2013, 9, 2206.	2.7	9
216	Nonlinear Langevin model for the early-stage dynamics of electrospinning jets. Molecular Physics, 2015, 113, 2435-2441.	1.7	9

#	Article	IF	CITATIONS
217	Advancing the Science and Technology of Electrospinning and Functional Nanofibers. Macromolecular Materials and Engineering, 2017, 302, 1700237.	3.6	9
218	Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 19324-19330.	8.0	9
219	Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 427-435.	1.1	9
220	Unexpected Electron Transport Suppression in a Heterostructured Graphene–MoS ₂ Multiple Field-Effect Transistor Architecture. ACS Nano, 2022, 16, 1291-1300.	14.6	9
221	Self-assembling of proteins and enzymes at nanoscale for biodevice applications. IET Nanobiotechnology, 2004, 151, 101.	2.1	8
222	Organic Lightâ€Emitting Nanofibers by Solventâ€Resistant Nanofluidics. Advanced Materials, 2008, 20, 4158-4162.	21.0	8
223	Easy Monitoring of Velocity Fields in Microfluidic Devices Using Spatiotemporal Image Correlation Spectroscopy. Analytical Chemistry, 2013, 85, 8080-8084.	6.5	8
224	Large-Area Oxidized Phosphorene Nanoflakes Obtained by Electrospray for Energy-Harvesting Applications. ACS Applied Nano Materials, 2021, 4, 3476-3485.	5.0	8
225	In silico broadband mechanical spectroscopy of amorphous tantala. Physical Review Research, 2019, 1, .	3.6	8
226	The luminescence quantum yield of organic one-dimensional periodic nanostructures. Nanotechnology, 2004, 15, 953-957.	2.6	7
227	Microcontact printing of metalloproteins. Synthetic Metals, 2005, 153, 21-24.	3.9	7
228	Metazoan Circadian Rhythm: Toward an Understanding of a Light-Based Zeitgeber in Sponges. Integrative and Comparative Biology, 2013, 53, 103-117.	2.0	7
229	Bioactive Nanofiber Matrices Functionalized with Fibronectinâ€Mimetic Peptides Driving the Alignment and Tubular Commitment of Adult Renal Stem Cells. Macromolecular Chemistry and Physics, 2016, 217, 199-212.	2.2	7
230	Combined capillary force and step and flash lithography. Nanotechnology, 2005, 16, 391-395.	2.6	6
231	Monolithic organic-oxide microcavities fabricated by low-temperature electron-beam evaporation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1654.	1.6	6
232	Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation. Applied Physics Letters, 2012, 100, 151607.	3.3	6
233	Biomineral Amorphous Lasers through Lightâ€Scattering Surfaces Assembled by Electrospun Fiber Templates. Laser and Photonics Reviews, 2018, 12, 1700224.	8.7	6
234	The Heterogeneity of Renal Stem Cells and Their Interaction with Bio- and Nano-materials. Advances in Experimental Medicine and Biology, 2019, 1123, 195-216.	1.6	6

#	Article	IF	CITATIONS
235	Conformable Nanowire-in-Nanofiber Hybrids for Low-Threshold Optical Gain in the Ultraviolet. ACS Nano, 2020, 14, 8093-8102.	14.6	6
236	Lattice Boltzmann multicomponent model for direct-writing printing. Physics of Fluids, 2021, 33, .	4.0	6
237	Melt electrowriting of poly(vinylidene fluorideâ€ <i>co</i> â€ŧrifluoroethylene). Polymer International, 2021, 70, 1725-1732.	3.1	6
238	Submicron pattern transfer to binary semiconductors via micromolding in capillaries. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2248.	1.6	5
239	ELECTROLUMINESCENCE AND AGGREGATION IN FLUORENETHIOPHENE-S,S-DIOXIDE: OLIGOMERS AND POLYMERS. Synthetic Metals, 2003, 135-136, 409-410.	3.9	5
240	Use of cholesteryl polysulfides in self-assembly and soft lithography on Au(111) and ITO. Applied Surface Science, 2005, 246, 313-322.	6.1	5
241	Nanostructuring polymers by soft lithography templates realized via ion sputtering. Nanotechnology, 2005, 16, 2714-2717.	2.6	5
242	Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures. Nanotechnology, 2008, 19, 335301.	2.6	5
243	Thermal tunability of monolithic polymer microcavities. Applied Physics Letters, 2008, 92, 253310.	3.3	5
244	Composite Electrospun Nanofibers for Influencing Stem Cell Fate. Methods in Molecular Biology, 2013, 1058, 25-40.	0.9	5
245	Optimization of electrospinning techniques for the realization of nanofiber plastic lasers. Proceedings of SPIE, 2016, , .	0.8	5
246	Aligned Nanofiber Topographies Enhance the Differentiation of Adult Renal Stem Cells into Glomerular Podocytes. Advanced Engineering Materials, 2018, 20, 1800003.	3.5	5
247	Room-temperature nanoimprinting on metallo-organic complexes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 981.	1.6	4
248	Electrical properties of <i>in vitro</i> biomineralized recombinant silicatein deposited by microfluidics. Applied Physics Letters, 2012, 101, 193702.	3.3	4
249	Electron-Beam Nanopatterning and Spectral Modulation of Organic Molecular Light-Emitting Single Crystals. Langmuir, 2014, 30, 1643-1649.	3.5	4
250	Perspectives: Nanofibers and nanowires for disordered photonics. APL Materials, 2017, 5, 035301.	5.1	4
251	Secondary Metabolite Production from Industrially Relevant Bacteria is Enhanced by Organic Nanofibers. Biotechnology Journal, 2017, 12, 1700313.	3.5	4
252	Quasi-3D morphology and modulation of focal adhesions of human adult stem cells through combinatorial concave elastomeric surfaces with varied stiffness. Soft Matter, 2019, 15, 5154-5162.	2.7	4

#	Article	IF	CITATIONS
253	Structural relaxation process in glass-forming liquids: A comparison between the optical Kerr effect and dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 553-560.	0.6	3
254	Sub-micron lithography on proteins by room temperature transfer molding. Synthetic Metals, 2003, 137, 1483-1484.	3.9	3
255	Study of the surface morphology of a cholesteryl tethering system for lipidic bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1714, 93-102.	2.6	3
256	Carbon nanotube alignment in a thermosetting resin. AIP Conference Proceedings, 2014, , .	0.4	3
257	Stacked electrospun polymer nanofiber heterostructures with tailored stimulated emission. RSC Advances, 2018, 8, 24175-24181.	3.6	3
258	Naturally Degradable Photonic Devices with Transient Function by Heterostructured Waxy‣ublimating and Water‣oluble Materials. Advanced Science, 2020, 7, 2001594.	11.2	3
259	Quantitative Super-Resolution Microscopy to Assess Adhesion of Neuronal Cells on Single-Layer Graphene Substrates. Membranes, 2021, 11, 878.	3.0	3
260	Capturing Free-Radical Polymerization by Synergetic <i>Ab Initio</i> Calculations and Topological Reactive Molecular Dynamics. Macromolecules, 2022, 55, 1474-1486.	4.8	3
261	WO ₃ Nanowires Enhance Molecular Alignment and Optical Anisotropy in Electrospun Nanocomposite Fibers: Implications for Hybrid Light-Emitting Systems. ACS Applied Nano Materials, 2022, 5, 3654-3666.	5.0	3
262	Low threshold tunable lasing from a new substituted thiophene-based oligomer. Synthetic Metals, 2003, 137, 1485-1486.	3.9	2
263	Solid-state laser devices based on an optically-confined oligothiophene-S,S-dioxide. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 458-461.	0.8	2
264	Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distributed Bragg reflectors. Chemical Physics Letters, 2005, 411, 316-320.	2.6	2
265	Electron beam and mechanical lithographies as enabling factors for organic-based device fabrication. Materials Science and Engineering C, 2005, 25, 848-852.	7.3	2
266	Real-time monitoring of microfluidic lithography. Synthetic Metals, 2005, 153, 325-328.	3.9	2
267	Investigating the temperature dependence of the viscosity of a non-Newtonian fluid within lithographically defined microchannels. Journal of Chemical Physics, 2007, 127, 164701.	3.0	2
268	Exciton self-trapping in tetrafluoro-dimethyl-aminoacridine single crystals. Journal of Chemical Physics, 2007, 126, 234501.	3.0	2
269	Imprinting strategies for 100Ânm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Materials Science and Engineering C, 2007, 27, 1428-1433.	7.3	2
270	Nanostructured, highly aligned poly(hydroxy butyrate) electrospun fibers for differentiation of skeletal and cardiac muscle cells. , 2011, 2011, 3597-600.		2

#	Article	IF	CITATIONS
271	Polymer nanofibers as novel light-emitting sources and lasing material. Proceedings of SPIE, 2013, , .	0.8	2
272	Lasers: Distributed Feedback Imprinted Electrospun Fiber Lasers (Adv. Mater. 38/2014). Advanced Materials, 2014, 26, 6660-6660.	21.0	2
273	Enhancement of radiative processes in nanofibers with embedded plasmonic nanoparticles. Optics Letters, 2016, 41, 1632.	3.3	2
274	Control of photon transport properties in nanocomposite nanowires. Proceedings of SPIE, 2016, , .	0.8	2
275	Electrospun Nanofibers: Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers (Adv. Sci. 15/2020). Advanced Science, 2020, 7, 2070083.	11.2	2
276	From nanocomposites to nanostructured materials. , 2020, , 3-39.		2
277	Cryptographic Strainâ€Dependent Light Pattern Generators. Advanced Materials Technologies, 0, , 2101129.	5.8	2
278	Tuneable optical gain and broadband lasing driven in electrospun polymer fibers by high dye concentration. Journal of Materials Chemistry C, 2022, 10, 2042-2048.	5.5	2
279	Impact of size effects on photopolymerization and its optical monitoring in-situ. Additive Manufacturing, 2022, 58, 103020.	3.0	2
280	High-Sensitive Ultrathin Negative Electron Beam Resist Based on Langmuir-Blodgett Films of Polycyanoacrylate. Japanese Journal of Applied Physics, 2004, 43, 3984-3985.	1.5	1
281	Oligomer molecules: first-principles investigation of the optical properties and applications to luminescent devices. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 106-111.	2.6	1
282	Polymer microcavities by room temperature electron-beam evaporation of TiOx and SiOx. Synthetic Metals, 2005, 153, 329-332.	3.9	1
283	Longitudinal coherence of organic-based microcavity lasers. Optics Express, 2008, 16, 10384.	3.4	1
284	Microfluidics: Two-Photon Continuous Flow Lithography (Adv. Mater. 10/2012). Advanced Materials, 2012, 24, 1303-1303.	21.0	1
285	Molecular Packing versus Strength and Effective Mass of the Emitting Exciton of β-1,1,4,4-Tetraphenyl-1,3-butadiene. Journal of Physical Chemistry C, 2014, 118, 8588-8594.	3.1	1
286	High sensitivity noise measurements: Circuits, techniques and applications. , 2015, , .		1
287	Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, ,	0.8	1
288	Effects of nanoparticles on the dynamic morphology of electrified jets. Europhysics Letters, 2017, 119, 44001.	2.0	1

#	Article	IF	CITATIONS
289	Non-local cooperative atomic motions that govern dissipation in amorphous tantala unveiled by dynamical mechanical spectroscopy. Acta Materialia, 2020, 201, 1-6.	7.9	1
290	Photoactivated Refractive Index Anisotropy in Fluorescent Thiophene Derivatives. Journal of Physical Chemistry C, 2020, 124, 25465-25472.	3.1	1
291	Structural relaxation process in glass-forming liquids: a comparison between the optical Kerr effect and dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 553-560.	0.6	1
292	Nanoscale Elastoplastic Wrinkling of Ultrathin Molecular Films. International Journal of Molecular Sciences, 2021, 22, 11732.	4.1	1
293	Nanostructuring poly-[2-methoxy-5-(2′-ethyl-hexiloxy)-p-phenylenevinylene] thin films by high-temperature soft lithography. Synthetic Metals, 2003, 139, 679-681.	3.9	0
294	Novel nanofabrication techniques of organic optical cavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 531-534.	0.8	0
295	Photoluminescence, polarization, waveguiding and gain properties of organic semiconductor single crystals. , 2007, , .		0
296	Double-peak droplet mass distribution observed during sub-ps laser ablation of Si targets. Applied Physics A: Materials Science and Processing, 2007, 88, 435-438.	2.3	0
297	Hybrid planar microresonators with organic and InGaAs active media. Optics Express, 2010, 18, 11650.	3.4	0
298	Nanocomposite Nanostructures: CdS-Polymer Nanocomposites and Light-Emitting Fibers by In Situ Electron-Beam Synthesis and Lithography (Adv. Mater. 39/2012). Advanced Materials, 2012, 24, 5319-5319.	21.0	0
299	Electrospun light-emitting nanofibers as building blocks for photonics and electronics. SPIE Newsroom, 0, , .	0.1	0
300	Electrospun conjugated polymer nanofibers as miniaturized light sources: control of morphology, optical properties, and assembly. , 2014, , .		0
301	Polymer Nanowires: Cooperativity in the Enhanced Piezoelectric Response of Polymer Nanowires (Adv.) Tj ETQq1	1 0.78431 21.0	4 rgBT /Ov∈
302	Nanofibers: Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer-Scale Spatial Resolution (Small 48/2015). Small, 2015, 11, 6416-6416.	10.0	0
303	Light coupling in polymer nanofibers: from single-photon emission to random lasing. , 2017, , .		0
304	Random optical media based on hybrid organic-inorganic nanowires: multiple scattering, field localization, and light diffusion. , 2017, , .		0
305	Biomineral Amorphous Lasers through Light-Scattering Surfaces Assembled by Electrospun Fiber Templates (Laser Photonics Rev. 12(1)/2018). Laser and Photonics Reviews, 2018, 12, 1870011.	8.7	0

Conjugated Polymer Nanofibers: Novel Light Sources for Microfluidic Systems. , 2010, , .

#	Article	IF	CITATIONS
307	3D printing of optical materials: an investigation of the microscopic properties. , 2018, , .		0
308	Shaping of Photo-active Materials by 3D Printing. , 2019, , .		0
309	Evidence of negative thermal expansion in supercooled tantala. Journal of Non-Crystalline Solids, 2021, 577, 121308.	3.1	0
310	Cryptographic Strainâ€Dependent Light Pattern Generators (Adv. Mater. Technol. 1/2022). Advanced Materials Technologies, 2022, 7, 2270002.	5.8	0
311	3D optical components made by additive manufacturing for casting complex patterns of light. , 2021, , .		0