Celine Merlet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8980226/publications.pdf

Version: 2024-02-01

40 papers

4,411 citations

257357 24 h-index 289141 40 g-index

41 all docs

41 docs citations

times ranked

41

5295 citing authors

#	Article	IF	CITATIONS
1	Elucidating Curvature-Capacitance Relationships in Carbon-Based Supercapacitors. Physical Review Letters, 2022, 128, 086001.	2.9	14
2	Probing and Interpreting the Porosity and Tortuosity Evolution of Li-O ₂ Cathodes on Discharge through a Combined Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2021, 125, 4955-4967.	1.5	11
3	Simulations of Ionic Liquids Confined in Surface-Functionalized Nanoporous Carbons: Implications for Energy Storage. ACS Applied Nano Materials, 2021, 4, 4007-4015.	2.4	12
4	NMR studies of adsorption and diffusion in porous carbonaceous materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 124-125, 57-84.	3.9	19
5	Mesoscopic simulations of the in situ NMR spectra of porous carbon based supercapacitors: electronic structure and adsorbent reorganisation effects. Physical Chemistry Chemical Physics, 2021, 23, 15925-15934.	1.3	4
6	Carbon–carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. Journal of Chemical Physics, 2021, 155, 184703.	1.2	17
7	Ionic Liquids under Confinement: From Systematic Variations of the Ion and Pore Sizes toward an Understanding of the Structure and Dynamics in Complex Porous Carbons. ACS Applied Materials & Interfaces, 2020, 12, 1789-1798.	4.0	39
8	Effects of functional groups and anion size on the charging mechanisms in layered electrode materials. Energy Storage Materials, 2020, 33, 460-469.	9.5	36
9	Computational Insights into Charge Storage Mechanisms of Supercapacitors. Energy and Environmental Materials, 2020, 3, 235-246.	7.3	49
10	Efficient prediction of nucleus independent chemical shifts for polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2020, 22, 13746-13755.	1.3	10
11	Local Distortions and Dynamics in Hydrated Y-Doped BaZrO ₃ . Journal of Physical Chemistry C, 2020, 124, 16689-16701.	1.5	12
12	Text mining assisted review of the literature on Li-O ₂ batteries. JPhys Materials, 2019, 2, 044004.	1.8	16
13	On the development of an original mesoscopic model to predict the capacitive properties of carbon-carbon supercapacitors. Electrochimica Acta, 2019, 327, 135022.	2.6	16
14	Carbons with Regular Pore Geometry Yield Fundamental Insights into Supercapacitor Charge Storage. ACS Central Science, 2019, 5, 1813-1823.	5. 3	44
15	Stochasticity of Pores Interconnectivity in Li–O ₂ Batteries and its Impact on the Variations in Electrochemical Performance. Journal of Physical Chemistry Letters, 2018, 9, 791-797.	2.1	37
16	Structural Characterization of the Li-Ion Battery Cathode Materials LiTi _{<i>x</i>} Mn _{2–<i>x</i>} O ₄ (0.2 ≤i>x ≤.5): A Combined Experimental ⁷ Li NMR and First-Principles Study. Chemistry of Materials, 2018, 30, 817-829.	3.2	27
17	Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Twoâ€Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 2018, 11, 1892-1899.	3.6	50
18	Importance of Incorporating Explicit 3D-Resolved Electrode Mesostructures in Li–O ₂ Battery Models. ACS Applied Energy Materials, 2018, 1, 6433-6441.	2.5	14

#	Article	IF	CITATIONS
19	Towards an atomistic understanding of disordered carbon electrode materials. Chemical Communications, 2018, 54, 5988-5991.	2.2	84
20	Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Twoâ€Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 2018, 11, 1889-1889.	3.6	3
21	Direct observation of ion dynamics in supercapacitor electrodes using inÂsitu diffusion NMR spectroscopy. Nature Energy, 2017, 2, .	19.8	285
22	New Perspectives on the Charging Mechanisms of Supercapacitors. Journal of the American Chemical Society, 2016, 138, 5731-5744.	6.6	529
23	Molecular Dynamics Simulations of Electrochemical Energy Storage Devices. Green Energy and Technology, 2016, , 61-89.	0.4	3
24	Single Electrode Capacitances of Porous Carbons in Neat Ionic Liquid Electrolyte at $100 \hat{A}^{\circ}$ C: A Combined Experimental and Modeling Approach. Journal of the Electrochemical Society, 2015, 162, A5091-A5095.	1.3	32
25	Lattice simulation method to model diffusion and NMR spectra in porous materials. Journal of Chemical Physics, 2015, 142, 094701.	1.2	28
26	NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors. Journal of the American Chemical Society, 2015, 137, 7231-7242.	6.6	182
27	New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis. Chemistry of Materials, 2015, 27, 6848-6857.	3.2	88
28	On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano, 2014, 8, 1576-1583.	7.3	201
29	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	1.6	11
30	The Electric Double Layer Has a Life of Its Own. Journal of Physical Chemistry C, 2014, 118, 18291-18298.	1.5	195
31	Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Chemical Physics, 2013, 15, 15781.	1.3	148
32	Charge Fluctuations in Nanoscale Capacitors. Physical Review Letters, 2013, 111, 106102.	2.9	129
33	Highly confined ions store charge more efficiently in supercapacitors. Nature Communications, 2013, 4, 2701.	5. 8	570
34	Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?. Journal of Physical Chemistry Letters, 2013, 4, 264-268.	2.1	220
35	Influence of solvation on the structural and capacitive properties of electrical double layer capacitors. Electrochimica Acta, 2013, 101, 262-271.	2.6	96
36	New Coarse-Grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations. Journal of Physical Chemistry C, 2012, 116, 7687-7693.	1.5	126

3

#	Article	IF	CITATION
37	On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11, 306-310.	13.3	861
38	Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations. Journal of Physical Chemistry C, 2011, 115, 16613-16618.	1.5	139
39	Thermal conductivity of ionic systems from equilibrium molecular dynamics. Journal of Physics Condensed Matter, 2011, 23, 102101.	0.7	30
40	Internal mobilities and diffusion in an ionic liquid mixture. Physical Chemistry Chemical Physics, 2010, 12, 14109.	1.3	24