Giovanni Palumbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8979876/publications.pdf

Version: 2024-02-01

		279798	1	377865	
80	1,605	23		34	
papers	citations	h-index		g-index	
89	89	89		1333	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	A Stereoconvergent Tsuji–Trost Reaction in the Synthesis of Cyclohexenyl Nucleosides. Chemistry - A European Journal, 2020, 26, 2597-2601.	3.3	7
2	Exploring the effect of chirality on the therapeutic potential of N-alkyl-deoxyiminosugars: anti-inflammatory response to Pseudomonas aeruginosa infections for application in CF lung disease. European Journal of Medicinal Chemistry, 2019, 175, 63-71.	5.5	16
3	<i>N</i> -Butyl- <scp>I</scp> -deoxynojirimycin (<scp>I</scp> -NBDNJ): Synthesis of an Allosteric Enhancer of α-Glucosidase Activity for the Treatment of Pompe Disease. Journal of Medicinal Chemistry, 2017, 60, 9462-9469.	6.4	31
4	A Semisynthetic Approach to New Immunoadjuvant Candidates: Siteâ€Selective Chemical Manipulation of <i>Escherichia coli</i> Monophosphoryl Lipidâ€A. Chemistry - A European Journal, 2016, 22, 11053-11063.	3.3	12
5	Solid phase synthesis of a novel folate-conjugated 5-aminolevulinic acid methyl ester based photosensitizer for selective photodynamic therapy. Tetrahedron Letters, 2015, 56, 775-778.	1.4	16
6	1′,5′-Anhydro- <scp> </scp> - <i>ribo</i> -hexitol Adenine Nucleic Acids (α- <scp> </scp> -HNA-A): Synthesis and Chiral Selection Properties in the Mirror Image World. Journal of Organic Chemistry, 2015, 80, 5014-5022.	3.2	13
7	Highly Stereoselective Synthesis of Lamivudine (3TC) and Emtricitabine (FTC) by a Novel <i>N</i> -Glycosidation Procedure. Organic Letters, 2015, 17, 2626-2629.	4.6	24
8	Oligonucleotides containing a ribo-configured cyclohexanyl nucleoside: probing the role of sugar conformation in base pairing selectivity. Organic and Biomolecular Chemistry, 2015, 13, 10041-10049.	2.8	4
9	Beyond Achmatowicz reaction: DDQ-mediated chemo- and stereoconvergent domino-one pot cyclization/rearrangement of bis-thioenol ether-containing chiral building blocks. Tetrahedron Letters, 2014, 55, 7007-7010.	1.4	4
10	A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Applied Microbiology and Biotechnology, 2014, 98, 7781-7791.	3.6	8
11	Sulfur-assisted domino access to bicyclic dihydrofurans: case study and early synthetic applications. Organic and Biomolecular Chemistry, 2013, 11, 7825.	2.8	11
12	Synthesis and Evaluation of Folate-Based Chlorambucil Delivery Systems for Tumor-Targeted Chemotherapy. Bioconjugate Chemistry, 2012, 23, 84-96.	3.6	43
13	Exploring the Role of Chirality in Nucleic Acid Recognition. Chemistry and Biodiversity, 2011, 8, 373-413.	2.1	40
14	Synthesis of 2,3-dihydro-1,4-dithiinyl nucleosides via Pummerer-type glycosidation. Tetrahedron Letters, 2010, 51, 6060-6063.	1.4	4
15	Towardl-Homo-DNA: Stereoselective de Novo Synthesis of \hat{l}^2 -l-erythro-Hexopyranosyl Nucleosides. Journal of Organic Chemistry, 2010, 75, 6402-6410.	3.2	26
16	Highly Stereoselective de Novo Synthesis of l-Hexoses. Journal of Organic Chemistry, 2010, 75, 3558-3568.	3.2	32
17	Glycomimetics at the Mirror: Medicinal Chemistry of L-Iminosugars. Current Medicinal Chemistry, 2009, 16, 473-505.	2.4	86
18	Synthesis and Base Pairing Properties of 1′,5′â€Anhydroâ€∢scp>Lâ€Hexitol Nucleic Acids (<scp>L</scp> â€HNA). Chemistry - A European Journal, 2009, 15, 10121-10131.	3.3	30

#	Article	IF	Citations
19	Synthesis of 1-deoxy-l-gulonojirimycin and 1-deoxy-l-talonojirimycin. Tetrahedron Letters, 2009, 50, 2045-2047.	1.4	24
20	Recent Advances in Monosaccharide Synthesis: A Journey into L-Hexose World. Current Organic Chemistry, 2009, 13, 71-98.	1.6	44
21	De novo approach to l-anhydrohexitol nucleosides as building blocks for the synthesis of l-hexitol nucleic acids (l-HNA). Tetrahedron Letters, 2008, 49, 6068-6070.	1.4	18
22	New sialyl Lewisx mimic containing an \hat{l}_{\pm} -substituted \hat{l}^2 3-amino acid spacer. Carbohydrate Research, 2008, 343, 31-38.	2.3	9
23	Synthesis and Proteomic Activity Evaluation of a new Isotope-Coded Affinity Tagging (ICAT) Reagent. Bioconjugate Chemistry, 2008, 19, 1095-1104.	3.6	13
24	Rapid Access to 1,6-Anhydro- \hat{l}^2 - <scp> </scp> -hexopyranose Derivatives via Domino Reaction: Synthesis of <scp> </scp> -Allose and <scp> </scp> -Glucose. Journal of Organic Chemistry, 2008, 73, 5636-5639.	3.2	20
25	New Insight into the Reaction of Singlet Oxygen with Sulfur-Containing Cyclic Alkenes:  Dye-Sensitized Photooxygenation of 5,6-Dihydro-1,4-dithiins. Journal of Organic Chemistry, 2007, 72, 10075-10080.	3.2	10
26	A General Approach to the Synthesis of 1-Deoxy-l-iminosugars. Organic Letters, 2007, 9, 3473-3476.	4.6	39
27	A General Route to D- and L-Six-Membered Nucleoside Analogues. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 959-962.	1.1	4
28	Highly diastereoselective preparation of anti- $\hat{l}\pm,\hat{l}^2$ -dialkyl \hat{l}^2 -amino acids containing natural $\hat{l}\pm$ -amino acid side chains. Tetrahedron, 2007, 63, 12202-12206.	1.9	8
29	A Versatile Route tol-Hexoses:  Synthesis ofl-Mannose andl-Altrose. Organic Letters, 2006, 8, 4863-4866.	4.6	25
30	Studies towards lipid A: a synthetic strategy for the enantioselective preparation of 3-hydroxy fatty acids. Tetrahedron: Asymmetry, 2006, 17, 2839-2841.	1.8	13
31	An expeditious procedure for the synthesis of isotopically labelled fatty acids: preparation of 2,2-d2-nonadecanoic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 675-682.	1.0	5
32	Triphenylphosphine Polymer-Bound/Iodine Complex: A Suitable Reagent for the Preparation of O-Isopropylidene Sugar Derivatives. Synthesis, 2006, 2006, 305-308.	2.3	3
33	Synthesis of C-Protected 2,2-Dideutero Î ² 3-Amino Acids. Synthesis, 2006, 2006, 4013-4016.	2.3	10
34	Efficient synthesis of orthogonally protected anti-2,3-diamino acids. Tetrahedron, 2005, 61, 6575-6579.	1.9	15
35	Synthesis of 4-Deoxy-l-(and d-)hexoses from Chiral Noncarbohydrate Building Blocks. Journal of Organic Chemistry, 2004, 69, 7033-7037.	3.2	17
36	Stereoselective Synthesis of Fully Protected (S)-1,7-Dioxaspiro[5,5]undec-4-ene Derivatives of Sugars. European Journal of Organic Chemistry, 2003, 2003, 2617-2621.	2.4	15

3

#	Article	IF	Citations
37	Asymmetric Synthesis of 1,3-Dithiolane Nucleoside Analogues. European Journal of Organic Chemistry, 2003, 2003, 346-350.	2.4	11
38	A novel approach to the stereocontrolled synthesis of C-vinyl \hat{l}^2 -d-galactopyranosides. Carbohydrate Research, 2003, 338, 1877-1880.	2.3	12
39	β-Amino-α-hydroxy Esters by Asymmetric Hydroxylation ofhomo-β-Amino Acid Esters. European Journal of Organic Chemistry, 2002, 2002, 3050-3054.	2.4	18
40	Mild Stereoselective Synthesis of Fully Protected 1,6-Dioxaspiro[4.5]dec-3-ene Derivatives of Sugars. European Journal of Organic Chemistry, 2002, 2002, 534-536.	2.4	7
41	A New Approach to The Synthesis of Enantiomerically Pure 4-Deoxy Sugars. Journal of Carbohydrate Chemistry, 2000, 19, 631-634.	1.1	3
42	Unexpected Products via Singlet Oxygen Oxygenation of Functionalized 5,6-Dihydro-1,4-oxathiins. Organic Letters, 2000, 2, 1205-1207.	4.6	14
43	A New Three Carbon HomologationViaSulfur Containing Heterocyclic Systems. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 153, 409-410.	1.6	1
44	A facile stereospecific synthesis of chiral β-keto sulfoxides. Tetrahedron: Asymmetry, 1999, 10, 3463-3466.	1.8	7
45	A New Strategy for the Asymmetric Synthesis of 1,3-Oxathiolane-Based Nucleoside Analogues. European Journal of Organic Chemistry, 1999, 1999, 1455-1458.	2.4	9
46	Mild Synthesis of Protected \hat{l}_{\pm} -D-Glycosyl lodides. European Journal of Organic Chemistry, 1999, 1999, 3147-3150.	2.4	35
47	A Versatile Synthesis of Enantiomerically Pure D- and L-Pyranosyl Nucleoside Analogues. Nucleosides & Nucleotides, 1999, 18, 651-652.	0.5	3
48	A New and Versatile Allylic Alcohol Anion and Acyl \hat{l}^2 -Anion Equivalent for Three-Carbon Homologations. Journal of Organic Chemistry, 1997, 62, 9369-9371.	3.2	41
49	Asymmetric induction in the coupling of 5,6-dihydro-1,4-dithiins with chiral aldehydes. A new synthetic approach to polyhydroxylated compounds. Tetrahedron, 1996, 52, 11857-11866.	1.9	14
50	Synthesis of Enantiopure N-and C-Protected homo- \hat{l}^2 -Amino Acids by Direct Homologation of \hat{l}_\pm -Amino Acids \hat{A} ¶. Tetrahedron, 1995, 51, 12337-12350.	1.9	100
51	Chiral N-protected \hat{l}^2 -iodoamines from \hat{l} ±-aminoacids: a general synthesis. Tetrahedron Letters, 1995, 36, 167-168.	1.4	42
52	Chemistry of Ethanediyl S,S-Acetals 9-Asymmetric Synthesis of ChiralcisAllylic Alcohols. Synthetic Communications, 1995, 25, 1517-1522.	2.1	6
53	Chemistry of Ethanediyl X,S-Acetals 12. Diastereoselective Synthesis of (E) Alkyl Vinyl Ethers. Synlett, 1995, 1995, 1274-1274.	1.8	8
54	Polymer-Bound Triarylphosphine-lodine Complexes, Convenient Coupling Reagent Systems in Peptide Synthesis. Synthesis, 1995, 1995, 141-143.	2.3	21

#	Article	IF	Citations
55	Chemistry of EthanediylS, S-Acetals. VII. A Stereoselective Synthesis of Allylic Alcohols withcis-Configurated Double Bond. Synthetic Communications, 1994, 24, 1223-1229.	2.1	8
56	Diastereoselective desulfurization of 5,6-dihydro-1,4-dithiins. Synthesis of muscalure from Musca domestica L Tetrahedron, 1994, 50, 7265-7268.	1.9	28
57	Chemistry of ethanediyl S,S-acetals 6- An example of vicarious nucleophilic substitution of hydrogen in 1,4-benzodithians. Tetrahedron, 1993, 49, 11383-11388.	1.9	7
58	A One-Step Synthesis of 2,3-Diydro-1,4-benzothiazines and Phenothiazines from 1,3-Thiazolidine Derivatives of Cyclohexanones. Heterocycles, 1993, 36, 1641.	0.7	4
59	Chemistry of Ethanediyl S,S-Acetals - 4. Promising Way to Cis-Substituted Olefins, Stereoselectively from Carbonyl Compounds. Synthetic Communications, 1992, 22, 1345-1350.	2.1	8
60	Reactivity of ethanediyl S,S-acetals - 3. Ring aromatization in cyclohexanone derivatives: A novelty synthesis of 1,4-benzodithians. Tetrahedron, 1991, 47, 4187-4194.	1.9	20
61	Reactivity of EthanediylS,S-Acetals; 2. Synthesis of 2,3-Dihydro-1,4-dithiins. Synthesis, 1991, 1991, 223-224.	2.3	19
62	Polymer-Supported Phosphine-Halogen Complexes $4 < \sup 1 < \sup 2$. Improved Formylation of Alcohols with Dimethylformamide. Synthetic Communications, 1987, 17, 1629-1636.	2.1	29
63	Thiosulfonic s-esters - 5. Mechanistic aspects of the reaction with chlorotrimethylsilane and sodium iodide. Tetrahedron, 1986, 42, 5377-5383.	1.9	6
64	Stereostructure and formation mechanisn of a new substituted benzofuran from phomenone Tetrahedron, 1986, 42, 4493-4498.	1.9	6
65	The reaction of ethanediyl S,S-acetals with halogens. Tetrahedron, 1986, 42, 2369-2376.	1.9	26
66	Polymer-Supported Phosphine-Halogen Complexes - 2 A New Facile Way for Esterification of Carboxylic Acids. Synthetic Communications, 1986, 16, 1081-1087.	2.1	24
67	Use of Polymeric Phosphine-Halogen Complexes in the Conversion of Epoxides to Halohydrins. Synthesis, 1986, 1986, 499-501.	2.3	34
68	On the conversion of substituted epoxides to halohydrins. Tetrahedron Letters, 1985, 26, 2011-2012.	1.4	8
69	Synthesis, spectral properties, and use of Thiodan, a new thiol-specific fluorescent reagent. The Protein Journal, 1985, 4, 133-140.	1.1	1
70	THIOSULFONIC S-ESTERSâ€III. A CONVENIENT PREPARATION OF AROMATIC SULFIDES. Phosphorous and Sulfur and the Related Elements, 1984, 19, 235-238.	0.2	16
71	Trimethylsilyl tetrafluoroborate a convenient reagent for solvolysis reactions. Tetrahedron Letters, 1984, 25, 577-578.	1.4	15
72	A new general synthesis of halohydrins. Tetrahedron Letters, 1983, 24, 1307-1310.	1.4	67

#	Article	IF	CITATIONS
73	Disulfides by reduction of thiosulfunic S-esters. Tetrahedron Letters, 1982, 23, 2391-2394.	1.4	10
74	Direct conversion of oxiranes to alkenes by chlorotrimethylsilane and sodium iodide. Tetrahedron Letters, 1981, 22, 3551-3552.	1.4	50
75	A Facile Way to ThiosulfonicS-Esters. Synthesis, 1981, 1981, 888-890.	2.3	46
76	Triterpenes from the galls of Pistacia palestina. Phytochemistry, 1979, 18, 896-898.	2.9	22
77	Triterpenes from the bled resin of Pistacia vera. Phytochemistry, 1978, 17, 815-817.	2.9	28
78	Triterpenes of galls of Pist acia terebinthus: Galls produced by Pemphigus utricularius. Phytochemistry, 1975, 14, 809-811.	2.9	23
79	Triterpene components of galls on the leaves of Pistacia terebinthus, produced by Pemphigus semilunarius. Phytochemistry, 1974, 13, 1992-1993.	2.9	16
80	Triterpenes from the galls of pistacia lentiscus. Phytochemistry, 1973, 12, 2534-2537.	2.9	28