Fenggang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8979861/publications.pdf

Version: 2024-02-01

62 papers	1,564 citations	24 h-index	330143 37 g-index
63	63	63	1208
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances in polymer electro-optic modulators. RSC Advances, 2015, 5, 15784-15794.	3.6	160
2	Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS ₂ nanosheets. Journal of Materials Chemistry A, 2021, 9, 6117-6122.	10.3	102
3	Ultrahigh Electro-Optic Coefficients, High Index of Refraction, and Long-Term Stability from Diels–Alder Cross-Linkable Binary Molecular Glasses. Chemistry of Materials, 2020, 32, 1408-1421.	6.7	98
4	A near-infrared BODIPY-based fluorescent probe for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in living cells. Talanta, 2019, 198, 390-397.	5.5	68
5	Nonlinear optical chromophores containing a novel pyrrole-based bridge: optimization of electro-optic activity and thermal stability by modifying the bridge. Journal of Materials Chemistry C, 2014, 2, 7785-7795.	5.5	64
6	Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. Journal of Materials Chemistry C, 2014, 2, 5124-5132.	5.5	62
7	Using phenoxazine and phenothiazine as electron donors for second-order nonlinear optical chromophore: Enhanced electro-optic activity. Dyes and Pigments, 2015, 114, 196-203.	3.7	50
8	Synthesis of novel nonlinear optical chromophores: achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. Journal of Materials Chemistry C, 2015, 3, 11595-11604.	5.5	47
9	Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: enhanced electro-optical activity and thermal stability. Journal of Materials Chemistry C, 2015, 3, 9283-9291.	5.5	39
10	Comparison of second-order nonlinear optical chromophores with D–π–A, D–A–π–A and D–D–πactorical pehavior. RSC Advances, 2014, 4, 52991-52999.	€â€"A 3.6	38
11	Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability. Materials Chemistry Frontiers, 2020, 4, 168-175.	5.9	38
12	Structureâ€"function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes and Pigments, 2018, 157, 55-63.	3.7	36
13	A BODIPY-based "OFF-ON―fluorescent probe for fast and selective detection of hypochlorite in living cells. Dyes and Pigments, 2019, 170, 107566.	3.7	36
14	Diastereoselective synthesis of cyclopropanes bearing trifluoromethyl-substituted all-carbon quaternary centers from 2-trifluoromethyl-1,3-enynes beyond fluorine elimination. Chemical Communications, 2019, 55, 3879-3882.	4.1	36
15	Synthesis of novel nonlinear optical chromophores with enhanced electro-optic activity by introducing suitable isolation groups into the donor and bridge. Journal of Materials Chemistry C, 2019, 7, 8019-8028.	5.5	35
16	Vertically aligned NiP2 nanosheets with interlaced mesh network for highly efficient water splitting under alkaline and acid solutions. International Journal of Hydrogen Energy, 2019, 44, 6535-6543.	7.1	35
17	The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Physical Chemistry Chemical Physics, 2015, 17, 5776-5784.	2.8	32
18	Synthesis and characterization of a novel second-order nonlinear optical chromophore based on a new julolidine donor. Physical Chemistry Chemical Physics, 2014, 16, 20209-20215.	2.8	31

#	Article	IF	CITATIONS
19	Comparative studies on structure–nonlinearity relationships in a series of novel second-order nonlinear optical chromophores with different aromatic amine donors. Dyes and Pigments, 2015, 120, 347-356.	3.7	29
20	Enhancement of electro-optic properties of bis(N,N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. Journal of Materials Chemistry C, 2017, 5, 6704-6712.	5 . 5	29
21	Synthesis and optical nonlinear property of NLO chromophores with alkoxy chains of different lengths using 8-hydroxy-1,1,7,7-tetramethyl-formyljulolidine as donor. Dyes and Pigments, 2015, 112, 42-49.	3.7	28
22	The design of nonlinear optical chromophores exhibiting large electro-optic activity and high thermal stability: The role of donor groups. Dyes and Pigments, 2016, 130, 138-147.	3.7	28
23	Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. Journal of Materials Chemistry C, 2015, 3, 5297-5306.	5. 5	25
24	Nonlinear optical chromophores based on Dewar's rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge. Physical Chemistry Chemical Physics, 2015, 17, 29679-29688.	2.8	25
25	The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. Journal of Materials Chemistry C, 2015, 3, 3913-3921.	5.5	24
26	Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dyes and Pigments, 2016, 134, 358-367.	3.7	23
27	Synthesis of novel nonlinear optical chromophores: achieving enhanced electro-optic activity and thermal stability by introducing rigid steric hindrance groups into the julolidine donor. Journal of Materials Chemistry C, 2017, 5, 1675-1684.	5.5	23
28	Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges. Dyes and Pigments, 2015, 122, 139-146.	3.7	22
29	Design and synthesis of novel H-Shaped chromophore for enhanced nonlinear optical properties. Dyes and Pigments, 2019, 165, 144-150.	3.7	21
30	A remarkable colorimetric probe for fluorescent ratiometric and ON-OFF discriminative detection of Hg2+ and Cu2+ by double-channel imaging in living cells. Dyes and Pigments, 2019, 171, 107782.	3.7	19
31	Synthesis of chromophores with ultrahigh electro-optic activity: Rational combination of the bridge, donor and acceptor groups. Dyes and Pigments, 2017, 136, 182-190.	3.7	18
32	The influence on properties with different conjugated direction of phenoxazine and phenothiazine-based chromophores for organic nonlinear optical materials. Dyes and Pigments, 2020, 176, 108219.	3.7	17
33	Synthesis, characterization and comparative studies of nonlinear optical chromophores with rod-like, Y-shaped and X-shaped configurations. Dyes and Pigments, 2019, 164, 54-61.	3.7	16
34	Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. Journal of Materials Chemistry C, 2015, 3, 11423-11431.	5 . 5	14
35	Improved electro-optical property by introducing stronger acceptor to thermal stable chromophores using modified julolidine as donor. Dyes and Pigments, 2019, 167, 245-254.	3.7	12
36	Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Advances, 2016, 6, 99743-99751.	3.6	11

#	Article	IF	Citations
37	P-doped CoCO ₃ nanosheets: an ultra-active versatile electrocatalyst for hydrogen evolution, oxygen evolution and hydrazine oxidation reactions. Sustainable Energy and Fuels, 2021, 5, 2257-2265.	4.9	11
38	A modifiable double donor based on bis(<i>N</i> -ethyl- <i>N</i> -hydroxyethyl)aniline for organic optical nonlinear chromophores. Materials Chemistry Frontiers, 2022, 6, 1079-1090.	5.9	11
39	A study of two thermostable NLO chromophores with different π-electron bridges using fluorene as the donor. New Journal of Chemistry, 2015, 39, 1038-1044.	2.8	10
40	Polygonal WS2-decorated-graphene multilayer films with microcavities prepared from a cheap precursor as anode materials for lithium-ion batteries. Materials Letters, 2019, 254, 73-76.	2.6	10
41	Synthesis of nonlinear optical chromophores with isophorone-derived bridges for enhanced thermal stability and electro-optic activity. Journal of Materials Chemistry C, 2020, 8, 9226-9235.	5.5	10
42	The design and synthesis of nonlinear optical chromophores containing two short chromophores for an enhanced electro-optic activity. Materials Advances, 2021, 2, 728-735.	5.4	10
43	Great improvement of performance for NLO chromophore with cyclopentadithiophenone unit as π-electron bridge. Materials Letters, 2015, 161, 674-677.	2.6	9
44	Synthesis and characterization of one novel second-order nonlinear optical chromophore based on new benzoxazin donor. Materials Letters, 2016, 164, 644-646.	2.6	9
45	Enhanced electro-optic activity of two novel bichromophores which are synthesized by Cu(I) catalyzed click-reaction. Dyes and Pigments, 2017, 139, 756-763.	3.7	9
46	Enhancement of electro-optic properties of nonlinear optical chromophores by introducing pentafluorobenzene group into the donor and π-bridge. Dyes and Pigments, 2019, 170, 107607.	3.7	8
47	A novel near-infrared-emitting aza-boron-dipyrromethene-based remarkable fluorescent probe for Hg2+ in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119207.	3.9	8
48	Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures. Materials Chemistry Frontiers, 2021, 5, 8341-8351.	5.9	8
49	Self-assembled binary chromophores with enhanced electro-optic activity and alignment stability. Materials Letters, 2020, 263, 127203.	2.6	7
50	Rational enhancement of electro-optic activity:Design and synthesis of cyanoacetate containing nonlinear optical chromophores. Dyes and Pigments, 2021, 185, 108914.	3.7	7
51	Design and synthesis of Phenylaminothiophene donor-based chromophore with enhanced electro-optic activity. Dyes and Pigments, 2021, 192, 109423.	3.7	7
52	Supramolecular self-assembled nonlinear optical molecular glasses with enhanced electro-optic activity and alignment stability. Dyes and Pigments, 2022, 202, 110283.	3.7	6
53	Enhanced thermal stability and electro-optic activity from fluorene-based nonlinear optical chromophores. Dyes and Pigments, 2020, 183, 108751.	3.7	5
54	Improving poling efficiency by synthesizing a nonlinear optical chromophore containing two asymmetric non-conjugated D–π–A chains. RSC Advances, 2015, 5, 10497-10504.	3.6	4

#	Article	IF	CITATION
55	Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing different steric hindrance groups. Materials Letters, 2017, 196, 230-233.	2.6	4
56	Efficient green fluorescent organic light-emitting diodes with extended lifetimes by exploiting an iridium complex as a sensitizer. Journal of Materials Chemistry C, 2021, 9, 15295-15300.	5 . 5	4
57	A novel TCF-aza-BODIPY-based near-infrared fluorescent probe for highly selective detection of hypochlorous acid in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121490.	3.9	4
58	Synthesis of second order nonlinear optical multichromophore based on double-donors with enhanced electro-optic coefficients and thermal stability. Dyes and Pigments, 2022, 203, 110276.	3.7	3
59	Design and synthesis of various double donors for nonlinear optical chromophores with enhanced electro-optic activity. Dyes and Pigments, 2022, 205, 110546.	3.7	3
60	Engineering multiphase for activating electroactive sites for highly efficient hydrogen evolution: Experimental and theoretical investigation. International Journal of Hydrogen Energy, 2019, 44, 13323-13333.	7.1	2
61	Alloy Foamâ€Derived Ni _{0.86} Fe _{2.14} O ₄ Hexagonal Plates as an Efficient Electrochemical Catalyst for the Oxygen Evolution Reaction. ChemistrySelect, 2020, 5, 1578-1585.	1.5	2
62	Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge. Symmetry, 2022, 14, 586.	2.2	2