
Christoph Romanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8979403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic Coupling of the Putative Coiled-coil Domain of ORAI1 with STIM1 Mediates ORAI1 Channel Activation. Journal of Biological Chemistry, 2008, 283, 8014-8022.	1.6	366
2	A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels. Journal of Biological Chemistry, 2009, 284, 8421-8426.	1.6	289
3	Coassembly of Trp1 and Trp3 Proteins Generates Diacylglycerol- and Ca2+-sensitive Cation Channels. Journal of Biological Chemistry, 2000, 275, 27799-27805.	1.6	264
4	Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials, 2008, 29, 1796-1806.	5.7	219
5	STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO Journal, 2011, 30, 1678-1689.	3.5	204
6	TRPC3 and TRPC4 Associate to Form a Redox-sensitive Cation Channel. Journal of Biological Chemistry, 2006, 281, 13588-13595.	1.6	198
7	Simple test system for single molecule recognition force microscopy. Analytica Chimica Acta, 2003, 479, 59-75.	2.6	192
8	Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death and Disease, 2010, 1, e75-e75.	2.7	180
9	Single-Molecule Imaging of L-Type Ca2+ Channels in Live Cells. Biophysical Journal, 2001, 81, 2639-2646.	0.2	179
10	STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nature Communications, 2013, 4, 2963.	5.8	179
11	Ca2+ Signaling by TRPC3 Involves Na+ Entry and Local Coupling to the Na+/Ca2+ Exchanger. Journal of Biological Chemistry, 2004, 279, 13696-13704.	1.6	164
12	Novel pyrazole compounds for pharmacological discrimination between receptorâ€operated and storeâ€operated <scp><scp>Ca²⁺</scp> </scp> entry pathways. British Journal of Pharmacology, 2012, 167, 1712-1722.	2.7	160
13	Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Letters, 1998, 437, 101-106.	1.3	150
14	Molecular Determinants of the Coupling between STIM1 and Orai Channels. Journal of Biological Chemistry, 2009, 284, 21696-21706.	1.6	140
15	2-Aminoethoxydiphenyl Borate Alters Selectivity of Orai3 Channels by Increasing Their Pore Size. Journal of Biological Chemistry, 2008, 283, 20261-20267.	1.6	131
16	C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels. Nature Neuroscience, 2006, 9, 1108-1116.	7.1	129
17	Modulation of Voltage- and Ca2+-dependent Gating of CaV1.3 L-type Calcium Channels by Alternative Splicing of a C-terminal Regulatory Domain. Journal of Biological Chemistry, 2008, 283, 20733-20744.	1.6	124
18	Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1337-1342.	3.3	121

#	Article	IF	CITATIONS
19	The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium, 2013, 53, 139-151.	1.1	121
20	A Ca2+ Release-activated Ca2+ (CRAC) Modulatory Domain (CMD) within STIM1 Mediates Fast Ca2+-dependent Inactivation of ORAI1 Channels. Journal of Biological Chemistry, 2009, 284, 24933-24938.	1.6	115
21	Molecular mechanisms of STIM/Orai communication. American Journal of Physiology - Cell Physiology, 2016, 310, C643-C662.	2.1	110
22	Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. Journal of Physiology, 2006, 577, 31-44.	1.3	106
23	Store-Independent Orai1/3 Channels Activated by Intracrine LeukotrieneC ₄ . Circulation Research, 2013, 112, 1013-1025.	2.0	106
24	A Coiled-coil Clamp Controls Both Conformation and Clustering of Stromal Interaction Molecule 1 (STIM1). Journal of Biological Chemistry, 2014, 289, 33231-33244.	1.6	105
25	The Extended Transmembrane Orai1 N-terminal (ETON) Region Combines Binding Interface and Gate for Orai1 Activation by STIM1. Journal of Biological Chemistry, 2013, 288, 29025-29034.	1.6	101
26	Mechanistic view on domains mediating STIM1–Orai coupling. Immunological Reviews, 2009, 231, 99-112.	2.8	97
27	The STIM/Orai coupling machinery. Channels, 2008, 2, 261-268.	1.5	92
28	Resting State Orai1 Diffuses as Homotetramer in the Plasma Membrane of Live Mammalian Cells*. Journal of Biological Chemistry, 2010, 285, 41135-41142.	1.6	92
29	TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3870-9.	3.3	90
30	An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nature Chemical Biology, 2018, 14, 396-404.	3.9	85
31	Phospholipase C-dependent control of cardiac calcium homeostasis involves a TRPC3-NCX1 signaling complex. Cardiovascular Research, 2007, 73, 111-119.	1.8	84
32	Intracellular Ca2+ Inhibits Smooth Muscle L-Type Ca2+ Channels by Activation of Protein Phosphatase Type 2B and by Direct Interaction with the Channel. Journal of General Physiology, 1997, 110, 503-513.	0.9	82
33	Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Analytica Chimica Acta, 2003, 497, 101-114.	2.6	82
34	Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials, 2003, 24, 5139-5144.	5.7	82
35	Mrs2p Forms a High Conductance Mg2+ Selective Channel in Mitochondria. Biophysical Journal, 2007, 93, 3872-3883.	0.2	81
36	Cholesterol modulates Orai1 channel function. Science Signaling, 2016, 9, ra10.	1.6	80

#	Article	IF	CITATIONS
37	PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10556-10561.	3.3	79
38	Ca2+ sensors of L-type Ca2+ channel. FEBS Letters, 2000, 487, 301-306.	1.3	77
39	Store Depletion-activated CaT1 Currents in Rat Basophilic Leukemia Mast Cells Are Inhibited by 2-Aminoethoxydiphenyl Borate. Journal of Biological Chemistry, 2002, 277, 26950-26958.	1.6	77
40	STIM1 activation of Orai1. Cell Calcium, 2019, 77, 29-38.	1.1	75
41	Increased Hydrophobicity at the N Terminus/Membrane Interface Impairs Gating of the Severe Combined Immunodeficiency-related ORAI1 Mutant. Journal of Biological Chemistry, 2009, 284, 15903-15915.	1.6	72
42	Complex role of STIM1 in the activation of store-independent Orai1/3 channels. Journal of General Physiology, 2014, 143, 345-359.	0.9	70
43	Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription. Science Signaling, 2017, 10, .	1.6	68
44	Cell microarrays on photochemically modified polytetrafluoroethylene. Biomaterials, 2005, 26, 5572-5580.	5.7	66
45	Calpastatin and nucleotides stabilize cardiac calcium channel activity in excised patches. Pflugers Archiv European Journal of Physiology, 1991, 418, 86-92.	1.3	62
46	Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. Journal of Cell Science, 2008, 121, 3133-3139.	1.2	62
47	Plasticity in Ca ²⁺ selectivity of Orai1/Orai3 heteromeric channel. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19623-19628.	3.3	61
48	Live-cell imaging of ER-PM contact architecture by a novel TIRFM approach reveals extension of junctions in response to store-operated Ca2+-entry. Scientific Reports, 2016, 6, 35656.	1.6	58
49	S-Nitrosation Controls Gating and Conductance of the α1 Subunit of Class C L-type Ca2+ Channels. Journal of Biological Chemistry, 2001, 276, 14797-14803.	1.6	57
50	Inhibition of a storeâ€operated Ca ²⁺ entry pathway in human endothelial cells by the isoquinoline derivative LOE 908. British Journal of Pharmacology, 1996, 119, 702-706.	2.7	53
51	Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Archiv European Journal of Physiology, 2005, 451, 99-104.	1.3	53
52	Ca2+ release-activated Ca2+ (CRAC) current, structure, and function. Cellular and Molecular Life Sciences, 2012, 69, 4163-4176.	2.4	53
53	Mechanisms of STIM1 Activation of Store-Independent Leukotriene C ₄ -Regulated Ca ²⁺ Channels. Molecular and Cellular Biology, 2013, 33, 3715-3723.	1.1	53
54	Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere. Journal of Biomedical Materials Research - Part A, 2003, 67A, 130-137.	2.1	52

Christoph Romanin

#	Article	IF	CITATIONS
55	Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy. Biochemical Journal, 2006, 396, 147-155.	1.7	52
56	Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6206-6211.	3.3	52
57	Cooperativeness of Orai Cytosolic Domains Tunes Subtype-specific Gating. Journal of Biological Chemistry, 2011, 286, 8577-8584.	1.6	51
58	A calcium-accumulating region, CAR, in the channel Orai1 enhances Ca ²⁺ permeation and SOCE-induced gene transcription. Science Signaling, 2015, 8, ra131.	1.6	51
59	The dihydropyridine niguldipine inhibits T-type Ca2+ currents in atrial myocytes. Pflugers Archiv European Journal of Physiology, 1992, 420, 410-412.	1.3	48
60	Membrane binding of β2-glycoprotein I can be described by a two-state reaction model: an atomic force microscopy and surface plasmon resonance study. Biochemical Journal, 2005, 389, 665-673.	1.7	48
61	Modulation of the smooth-muscle L-type Ca2+ channel α1 subunit (α1C-b) by the β2a subunit: a peptide which inhibits binding of β to the l–II linker of α1 induces functional uncoupling. Biochemical Journal, 2000, 348, 657-665.	1.7	47
62	Intracellular Ca2+ inactivates L-type Ca2+ channels with a Hill coefficient of approximately 1 and an inhibition constant of approximately 4 microM by reducing channel's open probability. Biophysical Journal, 1997, 73, 1857-1865.	0.2	46
63	Cell-Cell Contact Formation Governs Ca2+ Signaling by TRPC4 in the Vascular Endothelium. Journal of Biological Chemistry, 2010, 285, 4213-4223.	1.6	45
64	A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nature Communications, 2018, 9, 825.	5.8	45
65	A type 2A phosphatase-sensitive phosphorylation site controls modal gating of L-type Ca2+ channels in human vascular smooth-muscle cells. Biochemical Journal, 1996, 318, 513-517.	1.7	44
66	Molecular Determinants within N Terminus of Orai3 Protein That Control Channel Activation and Gating. Journal of Biological Chemistry, 2011, 286, 31565-31575.	1.6	44
67	Canonical Transient Receptor Potential (TRPC) 1 Acts as a Negative Regulator for Vanilloid TRPV6-mediated Ca2+ Influx. Journal of Biological Chemistry, 2012, 287, 35612-35620.	1.6	44
68	Communication between N terminus and loop2 tunes Orai activation. Journal of Biological Chemistry, 2018, 293, 1271-1285.	1.6	44
69	A novel STIM1-Orai1 gating interface essential for CRAC channel activation. Cell Calcium, 2019, 79, 57-67.	1.1	44
70	The STIM1/Orai signaling machinery. Channels, 2013, 7, 330-343.	1.5	42
71	CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells. Journal of Physiology, 2004, 557, 121-132.	1.3	41
72	Recent progress on STIM1 domains controlling Orai activation. Cell Calcium, 2009, 46, 227-232.	1.1	40

Christoph Romanin

#	Article	IF	CITATIONS
73	Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus. Journal of Biological Chemistry, 2018, 293, 1259-1270.	1.6	40
74	Tolerance to nitroglycerin is caused by reduced guanylate cyclase activation. Journal of Molecular and Cellular Cardiology, 1989, 21, 41-48.	0.9	36
75	The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels. Cell Calcium, 2008, 43, 260-269.	1.1	36
76	Nanopatterned polymer substrates promote endothelial proliferation by initiation of β-catenin transcriptional signaling. Acta Biomaterialia, 2012, 8, 2953-2962.	4.1	35
77	Assembly domains in TRP channels. Biochemical Society Transactions, 2007, 35, 84-85.	1.6	34
78	EUV micropatterning for biocompatibility control of PET. Applied Physics A: Materials Science and Processing, 2010, 100, 511-516.	1.1	34
79	Potent block of Clâ^' channels by antiallergic drugs. Biochemical and Biophysical Research Communications, 1992, 188, 957-963.	1.0	33
80	Oriented Binding of the His6-Tagged Carboxyl-Tail of the L-type Ca2+ Channel α1-Subunit to a New NTA-Functionalized Self-Assembled Monolayer. Langmuir, 2004, 20, 5885-5890.	1.6	33
81	Sequential activation of STIM1 links Ca ²⁺ with luminal domain unfolding. Science Signaling, 2019, 12, .	1.6	32
82	Voltage-Gated Rearrangements Associated with Differential β-Subunit Modulation of the L-Type Ca2+ Channel Inactivation. Biophysical Journal, 2004, 87, 844-857.	0.2	31
83	Guanylate cyclase activation by organic nitrates in not mediated via nitrite. Journal of Molecular and Cellular Cardiology, 1988, 20, 389-396.	0.9	30
84	Activity of cardiac L-type Ca2+ channels is sensitive to cytoplasmic calcium. Pflugers Archiv European Journal of Physiology, 1992, 421, 516-518.	1.3	30
85	Molecular determinant for runâ€down of Lâ€ŧype Ca 2+ channels localized in the carboxyl terminus of the α 1C subunit. Journal of Physiology, 2000, 529, 119-130.	1.3	30
86	UV surface modification of a new nanocomposite polymer to improve cytocompatibility. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 453-468.	1.9	30
87	Characterization and cytocompatibility of carbon layers prepared by photo-induced chemical vapor deposition. Thin Solid Films, 2007, 515, 6765-6772.	0.8	30
88	Structure, Regulation and Biophysics of ICRAC, STIM/Orai1. Advances in Experimental Medicine and Biology, 2012, 740, 383-410.	0.8	30
89	Crosstalk Between Voltage-Independent Ca 2+ Channels and L-Type Ca 2+ Channels in A7r5 Vascular Smooth Muscle Cells at Elevated Intracellular pH. Circulation Research, 2003, 92, 888-896.	2.0	29
90	Trypsin increases availability and open probability of cardiac L-type Ca2+ channels without affecting inactivation induced by Ca2+. Biophysical Journal, 1995, 69, 1847-1857.	0.2	28

#	Article	IF	CITATIONS
91	Expression of Trp3 Determines Sensitivity of Capacitative Ca2+ Entry to Nitric Oxide and Mitochondrial Ca2+ Handling. Journal of Biological Chemistry, 2001, 276, 48149-48158.	1.6	28
92	ldentification of a rare subset of adipose tissueâ€resident progenitor cells, which express CD133 and TRPC3 as a VEGFâ€regulated Ca ²⁺ entry channel. FEBS Letters, 2008, 582, 2696-2702.	1.3	28
93	Lipid-independent control of endothelial and neuronal TRPC3 channels by light. Chemical Science, 2019, 10, 2837-2842.	3.7	28
94	A sequence in the carboxy-terminus of the α1C subunit important for targeting, conductance and open probability of L-type Ca2+ channels. FEBS Letters, 2000, 477, 161-169.	1.3	27
95	CRAC inhibitors: identification and potential. Expert Opinion on Drug Discovery, 2008, 3, 787-800.	2.5	27
96	Adhesion and proliferation of human vascular cells on UV-light-modified polymers. Biotechnology and Applied Biochemistry, 2004, 39, 59.	1.4	26
97	Action of calpastatin in prevention of cardiac L-type Ca2+ channel run-down cannot be mimicked by synthetic calpain inhibitors. Pflugers Archiv European Journal of Physiology, 1995, 429, 503-510.	1.3	25
98	Essential role of the beta subunit in modulation of C-class L-type Ca2+ channels by intracellular pH. FEBS Letters, 1997, 408, 75-80.	1.3	25
99	Dynamics of Spreading and Alignment of Cells CulturedIn Vitroon a Grooved Polymer Surface. Journal of Nanomaterials, 2011, 2011, 1-10.	1.5	25
100	A novel homology model of TRPC3 reveals allosteric coupling between gate and selectivity filter. Cell Calcium, 2013, 54, 175-185.	1.1	25
101	STIM Proteins: An Ever-Expanding Family. International Journal of Molecular Sciences, 2021, 22, 378.	1.8	25
102	The STIM1: Orai Interaction. Advances in Experimental Medicine and Biology, 2016, 898, 25-46.	0.8	24
103	Electroporation chip for adherent cells on photochemically modified polymer surfaces. Applied Physics Letters, 2008, 92, 013901.	1.5	23
104	The benzazepine/benzothiazepine binding domain of the cardiac L-type Ca2+ channel is accessible only from the extracellular side. Pflugers Archiv European Journal of Physiology, 1993, 424, 552-554.	1.3	22
105	Inactivation-mimicking block of the epithelial calcium channel TRPV6. Science Advances, 2020, 6, .	4.7	22
106	Mechanism of STIM activation. Current Opinion in Physiology, 2020, 17, 74-79.	0.9	22
107	Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation. Nature Chemical Biology, 2021, 17, 196-204.	3.9	22
108	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040.	1.7	21

#	Article	IF	CITATIONS
109	CRAC channel opening is determined by a series of Orai1Âgating checkpoints in the transmembrane and cytosolicÂregions. Journal of Biological Chemistry, 2021, 296, 100224.	1.6	20
110	Gating and permeation of Orai channels. Frontiers in Bioscience - Landmark, 2012, 17, 1304.	3.0	19
111	Estimating the number of channels in patch-clamp recordings: application to kinetic analysis of multichannel data from voltage-operated channels. Biophysical Journal, 1997, 72, 1143-1152.	0.2	17
112	ATP-induced activation of expressed RyR3 at low free calcium. FEBS Letters, 2000, 471, 256-260.	1.3	17
113	Inhibition of Orai1-mediated Ca ²⁺ entry is a key mechanism of the antiproliferative action of sirolimus in human arterial smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1646-H1657.	1.5	17
114	The STIM-Orai Pathway: The Interactions Between STIM and Orai. Advances in Experimental Medicine and Biology, 2017, 993, 59-81.	0.8	17
115	Modulation of the smooth-muscle L-type Ca2+ channel α1 subunit (α1C-b) by the β2a subunit: a peptide which inhibits binding of β to the l‒ll linker of α1 induces functional uncoupling. Biochemical Journal, 2000, 348, 657.	1.7	16
116	Direct association of the reticulon protein RTN1A with the ryanodine receptor 2 in neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1421-1433.	1.9	13
117	Photoswitchable Inhibitor of the Calcium Channel TRPV6. ACS Medicinal Chemistry Letters, 2019, 10, 1341-1345.	1.3	13
118	Co-localization of CD3 and prion protein in Jurkat lymphocytes after hypothermal stimulation. FEBS Letters, 2004, 566, 121-125.	1.3	12
119	Detailed Evidence for an Unparalleled Interaction Mode between Calmodulin and Orai Proteins. Angewandte Chemie - International Edition, 2017, 56, 15755-15759.	7.2	12
120	Defects in the STIM1 SOARα2 domain affect multiple steps in the CRAC channel activation cascade. Cellular and Molecular Life Sciences, 2021, 78, 6645-6667.	2.4	12
121	Lpe10p modulates the activity of the Mrs2pâ€based yeast mitochondrial Mg ²⁺ channel. FEBS Journal, 2010, 277, 3514-3525.	2.2	11
122	Basal dephosphorylation controls slow gating of L-type Ca2+ channels in human vascular smooth muscle. FEBS Letters, 1995, 373, 30-34.	1.3	10
123	Rapid NMR-scale purification of 15N,13C isotope-labeled recombinant human STIM1 coiled coil fragments. Protein Expression and Purification, 2018, 146, 45-50.	0.6	10
124	Laser-induced periodic surface structures (LIPSS) on polymer surfaces. , 2012, , .		8
125	Investigations on the distribution of polymer additives in polypropylene using confocal fluorescence microscopy. International Journal of Polymer Analysis and Characterization, 2017, 22, 692-698.	0.9	8
126	Micropatterned atmospheric pressure discharge surface modification of fluorinated polymer films for mammalian cell adhesion and protein binding. Applied Physics A: Materials Science and Processing, 2008, 92, 547-555.	1.1	7

#	Article	IF	CITATIONS
127	The Run-Down Phenomenon of Ca2+ Channels. , 2005, , 219-230.		7
128	Laser microstructuring of photomodified fluorinated ethylene propylene surface for confined growth of Chinese hamster ovary cells and single cell isolation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 170-176.	1.6	5
129	Removing non-random artifacts from patch clamp traces. Journal of Neuroscience Methods, 1998, 82, 175-186.	1.3	3
130	STIM1 structure-function and downstream signaling pathways. Cell Calcium, 2019, 80, 101-102.	1.1	3
131	Highlighting the Multifaceted Role of Orai1 N-Terminal- and Loop Regions for Proper CRAC Channel Functions. Cells, 2022, 11, 371.	1.8	3
132	Surface modification of polymers by UV-irradiation: applications in micro- and biotechnology. , 2005, , .		2
133	Natural photoswitches expose STIM1 activation steps. Cell Calcium, 2020, 90, 102240.	1.1	2
134	TRPV6 Regulation by Cis-22a and Cholesterol. Biomolecules, 2022, 12, 804.	1.8	2
135	Photochemical surface modification of polymers for biomedical applications. , 2006, , .		1
136	Laser-induced micro- and nanostructures at polymer surfaces for applications in cell biology. , 2011, , .		1
137	Characterization of the Orai-Calmodulin Interaction as Potential Mediator of Calcium-Dependent Orai-Channel Inactivation. Biophysical Journal, 2017, 112, 183a-184a.	0.2	1
138	The many states of STIM1. ELife, 2021, 10, .	2.8	1
139	Corrigendum to: Trp proteins form store-operated cation channels in human vascular endothelial cells (FEBS 20791). FEBS Letters, 1999, 442, 122-122.	1.3	Ο
140	Interference In Coiled-coil Mediated Coupling Between Stim1 And Orai Channels. Biophysical Journal, 2009, 96, 115a-116a.	0.2	0
141	Heteromeric channel assembly of Orai1 and Orai3 exhibits altered Ca2+ selectivity. Biophysical Journal, 2009, 96, 559a-560a.	0.2	Ο
142	The Second Loop of Orai Channels Fine-Tunes Ca2+ Feedback Regulation. Biophysical Journal, 2010, 98, 676a.	0.2	0
143	UV Laser Patterning of Various Polymers for Biocompatibility Control of Chondrocyte Adhesion and Differentiation Grade. Biophysical Journal, 2011, 100, 624a.	0.2	0
144	Cooperativeness of Orai Cytosolic Domains Tunes Subtype-Specific Gating. Biophysical Journal, 2011, 100, 181a-182a.	0.2	0

#	Article	IF	CITATIONS
145	Analysis of the Functional Determinants of Cation Permeation Through TRPC3. Biophysical Journal, 2011, 100, 105a-106a.	0.2	0
146	Extending Optogenetics to a Ca2+-Selective Channel. Chemistry and Biology, 2011, 18, 820-821.	6.2	0
147	Flexibility of the Third Extracellular Loop Affects Permeation of Orai1 Channels. Biophysical Journal, 2012, 102, 314a.	0.2	0
148	In this issue of <i>Channels</i> . Channels, 2013, 7, 329-329.	1.5	0
149	Novel Trans-Membrane Mutation Switches Orai1 to a Constitutively Active and Ca2+ Selective Channel. Biophysical Journal, 2014, 106, 316a.	0.2	0
150	Cholesterol Regulates Orai1 Function. Biophysical Journal, 2014, 106, 317a.	0.2	0
151	Stim1 Cytosolic Coiled-Coil Interactions in the Resting and Activated State. Biophysical Journal, 2014, 106, 314a.	0.2	0
152	Multiple Evidenz für einen ungewöhnlichen Wechselwirkungsmodus zwischen Calmodulin und Oraiâ€Proteinen. Angewandte Chemie, 2017, 129, 15962-15967.	1.6	0
153	Resonance assignment of coiled-coil 3 (CC3) domain of human STIM1. Biomolecular NMR Assignments, 2021, 15, 433-439.	0.4	0
154	Commentary to Baraniak etÂal. "Orai channel C-terminal peptides are key modulators of STIM-Orai coupling and calcium signal generation―published in cell reports 35: 109322 Cell Calcium, 2021, 98, 102455.	1.1	0
155	Protein–Protein Interactions in TRPC Channel Complexes. Frontiers in Neuroscience, 2006, , 331-348.	0.0	0
156	Complex role of STIM1 in the activation of store-independent Orai1/3 channels. Journal of Cell Biology, 2014, 204, 2045OIA34.	2.3	0
157	"Functional communication between IP3R and STIM2 at subthreshold stimuli is a critical checkpoint for initiation of SOCEâ€: Cell Calcium, 2022, 104, 102574.	1.1	0