
Burhan Gulbahar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8979360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Communication Theoretical Modeling and Analysis of Underwater Magneto-Inductive Wireless Channels. IEEE Transactions on Wireless Communications, 2012, 11, 3326-3334.	9.2	118
2	Information Theoretical Optimization Gains in Energy Adaptive Data Gathering and Relaying in Cognitive Radio Sensor Networks. IEEE Transactions on Wireless Communications, 2012, 11, 1788-1796.	9.2	21
3	A Communication Theoretical Analysis of Multiple-Access Channel Capacity in Magneto-Inductive Wireless Networks. IEEE Transactions on Communications, 2017, 65, 2594-2607.	7.8	20
4	Theoretical Analysis of Magneto-Inductive THz Wireless Communications and Power Transfer With Multi-Layer Graphene Nano-Coils. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 60-70.	2.1	19
5	A Communication Theoretical Modeling of Single-Layer Graphene Photodetectors and Efficient Multireceiver Diversity Combining. IEEE Nanotechnology Magazine, 2012, 11, 601-610.	2.0	14
6	Network Topology Modulation for Energy and Data Transmission in Internet of Magneto-Inductive Things. , 2016, , .		11
7	Wireless Internet service providing for 5G with hybrid TV broadcast and visible light communications. , 2017, , .		8
8	CSSTag: Optical Nanoscale Radar and Particle Tracking for In-Body and Microfluidic Systems With Vibrating Graphene and Resonance Energy Transfer. IEEE Transactions on Nanobioscience, 2017, 16, 905-916.	3.3	8
9	Constant Fidelity Entanglement Flow in Quantum Communication Networks. , 2010, , .		7
10	Nanoscale optical communications modulator and acousto-optic transduction with vibrating graphene and resonance energy transfer. , 2017, , .		6
11	Energy Harvesting and Magneto-Inductive Communications With Molecular Magnets on Vibrating Graphene and Biomedical Applications in the Kilohertz to Terahertz Band. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2017, 3, 194-206.	2.1	6
12	Quantum Spatial Modulation of Optical Channels: Quantum Boosting in Spectral Efficiency. IEEE Communications Letters, 2019, 23, 2026-2030.	4.1	6
13	Theoretical Modeling of Viscosity Monitoring with Vibrating Resonance Energy Transfer for Point-of-Care and Environmental Monitoring Applications. Micromachines, 2019, 10, 3.	2.9	6
14	A Communication Theoretical Modeling of Single-Walled Carbon Nanotube Optical Nanoreceivers and Broadcast Power Allocation. IEEE Nanotechnology Magazine, 2012, 11, 395-405.	2.0	5
15	Preparation and Characterization of Freely-Suspended Graphene Nanomechanical Membrane Devices with Quantum Dots for Point-of-Care Applications. Micromachines, 2020, 11, 104.	2.9	5
16	Stochastic Resonance in Graphene Bilayer Optical Nanoreceivers. IEEE Nanotechnology Magazine, 2014, 13, 1107-1117.	2.0	4
17	Quantum path computing: computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles. Quantum Information Processing, 2019, 18, 1.	2.2	4
18	Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear SchrĶdinger equations. Scientific Reports, 2020, 10, 10968.	3.3	3

#	ARTICLE	IF	CITATIONS
19	Immune system-inspired evolutionary opportunistic spectrum access in cognitive radio ad hoc networks. , 2010, , .		2
20	FoVLC: Foveation Based Data Hiding in Display Transmitters for Visible Light Communications. , 2018, , .		2
21	3D Neuromorphic Wireless Power Transfer and Energy Transmission Based Synaptic Plasticity. IEEE Access, 2019, 7, 16594-16615.	4.2	2
22	Theory of Quantum Path Entanglement and Interference with Multiplane Diffraction of Classical Light Sources. Entropy, 2020, 22, 246.	2.2	2
23	MIComp. , 2018, , .		1
24	Graphene-Based Acousto-Optic Sensors with Vibrating Resonance Energy Transfer and Applications. , 2018, , .		0
25	Space-track modulation and coding for high density aerial vehicle downlink networks with free space optical and visible light communications. Turkish Journal of Electrical Engineering and Computer Sciences 2019, 27, 2590-2605	1.4	Ο