
Amy Ralston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8979118/publications.pdf Version: 2024-02-01

AMY PAISTON

#	Article	IF	CITATIONS
1	Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development (Cambridge), 2005, 132, 2093-2102.	2.5	945
2	The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass. Developmental Cell, 2009, 16, 398-410.	7.0	867
3	Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development (Cambridge), 2010, 137, 395-403.	2.5	389
4	Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Developmental Biology, 2008, 313, 614-629.	2.0	305
5	Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10783-10790.	7.1	212
6	HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst. PLoS Genetics, 2014, 10, e1004618.	3.5	186
7	Oct4 Cell-Autonomously Promotes Primitive Endoderm Development in the Mouse Blastocyst. Developmental Cell, 2013, 25, 610-622.	7.0	168
8	Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends in Genetics, 2015, 31, 402-410.	6.7	96
9	The genetics of induced pluripotency. Reproduction, 2010, 139, 35-44.	2.6	59
10	The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation. Scientific Reports, 2017, 7, 17156.	3.3	58
11	HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. ELife, 2018, 7, .	6.0	57
12	OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 447-455.	4.8	54
13	Maternal <i>Cdx2</i> is dispensable for mouse development. Development (Cambridge), 2012, 139, 3969-3972.	2.5	51
14	TEAD4/YAP1/WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development (Cambridge), 2019, 146, .	2.5	28
15	<i>Cdx2</i> Efficiently Induces Trophoblast Stem-Like Cells in NaÃ⁻ve, but Not Primed, Pluripotent Stem Cells. Stem Cells and Development, 2015, 24, 1352-1365.	2.1	25
16	How Signaling Promotes Stem Cell Survival: Trophoblast Stem Cells and Shp2. Developmental Cell, 2006, 10, 275-276.	7.0	18
17	Early Embryonic Cell Fate Decisions in the Mouse. Advances in Experimental Medicine and Biology, 2010, 695, 1-13.	1.6	13
18	Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic. Journal of Biological Chemistry, 2017, 292, 4138-4151.	3.4	12

AMY RALSTON

#	Article	IF	CITATIONS
19	Visualizing HIPPO Signaling Components in Mouse Early Embryonic Development. Methods in Molecular Biology, 2019, 1893, 335-352.	0.9	6
20	Capturing and Interconverting Embryonic Cell Fates in a Dish. Current Topics in Developmental Biology, 2018, 128, 181-202.	2.2	5
21	Pluripotency—What Does Cell Polarity Have to Do With It?. , 2018, , 31-60.		4
22	XEN and the Art of Stem Cell Maintenance: Molecular Mechanisms Maintaining Cell Fate and Self-Renewal in Extraembryonic Endoderm Stem (XEN) Cell Lines. Advances in Anatomy, Embryology and Cell Biology, 2018, 229, 69-78.	1.6	3
23	Efficient generation of endogenous protein reporters for mouse development. Development (Cambridge), 2021, 148, .	2.5	2
24	Universal assembly instructions for the placenta. Nature, 2020, 587, 370-371.	27.8	2
25	The amnion as a window into human pluripotency. Cell Stem Cell, 2022, 29, 661-662.	11.1	2
26	Three, two, one… TROPHO-BLAST OFF!. Cell Stem Cell, 2015, 17, 499-500.	11.1	1
27	Investigations at the â€~Four-Front' of Mammalian Development. Trends in Genetics, 2016, 32, 457-458.	6.7	0
28	AttrActin' Attention to Early Mouse Development. Cell, 2018, 173, 544-545.	28.9	0