Fengrui Yao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8978278/fengrui-yao-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17	410	11	19
papers	citations	h-index	g-index
19	523	18.9	3.05
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
17	Colors of Single-Wall Carbon Nanotubes. <i>Advanced Materials</i> , 2021 , 33, e2006395	24	7
16	Carbon Nanotubes: Colors of Single-Wall Carbon Nanotubes (Adv. Mater. 8/2021). <i>Advanced Materials</i> , 2021 , 33, 2170060	24	
15	Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. <i>Nature Nanotechnology</i> , 2021 , 16, 1073-1078	28.7	9
14	Graphene photonic crystal fibre with strong and tunable lighthatter interaction. <i>Nature Photonics</i> , 2019 , 13, 754-759	33.9	69
13	Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. <i>Nature Communications</i> , 2018 , 9, 3311	17.4	135
12	Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation. <i>Nature Communications</i> , 2018 , 9, 3387	17.4	13
11	Ultrafast Broadband Charge Collection from Clean Graphene/CHNHPbI Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14952-14957	16.4	21
10	Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency. <i>Advanced Materials</i> , 2017 , 29, 1701580	24	25
9	Real-Time Observation of Carbon Nanotube Etching Process Using Polarized Optical Microscope. <i>Advanced Materials</i> , 2017 , 29, 1701959	24	13
8	High-Throughput Optical Imaging and Spectroscopy of One-Dimensional Materials. <i>Chemistry - A European Journal</i> , 2017 , 23, 9703-9710	4.8	
7	SWCNT-MoS -SWCNT Vertical Point Heterostructures. <i>Advanced Materials</i> , 2017 , 29, 1604469	24	26
6	Chemical Intercalation of Topological Insulator Grid Nanostructures for High-Performance Transparent Electrodes. <i>Advanced Materials</i> , 2017 , 29, 1703424	24	17
5	Quiver-quenched optical-field-emission from carbon nanotubes. <i>Applied Physics Letters</i> , 2017 , 111, 133	19.14	11
4	Carbon Nanotubes: Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency (Adv. Mater. 30/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
3	High Conversion Efficiency Carbon Nanotube-Based Barrier-Free Bipolar-Diode Photodetector. <i>ACS Nano</i> , 2016 , 10, 9595-9601	16.7	18
2	High-Throughput Determination of Statistical Structure Information for Horizontal Carbon Nanotube Arrays by Optical Imaging. <i>Advanced Materials</i> , 2016 , 28, 2018-23	24	8
1	BN-Enabled Epitaxy of Pb(1-x)Sn(x)Se Nanoplates on SiO / Si for High-Performance Mid-Infrared Detection. <i>Small</i> , 2015 , 11, 5388-94	11	34