

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8978098/publications.pdf Version: 2024-02-01

RILL FOV

#	Article	IF	CITATIONS
1	The 2016 KaikÅura, New Zealand, Earthquake: Preliminary Seismological Report. Seismological Research Letters, 2017, 88, 727-739.	1.9	170
2	Tomography of the Alpine region from observations of seismic ambient noise. Geophysical Journal International, 2009, 178, 338-350.	2.4	157
3	The M _w 6.2 Christchurch earthquake of February 2011: preliminary report. New Zealand Journal of Geology, and Geophysics, 2012, 55, 67-90.	1.8	155
4	Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geoscience, 2017, 10, 765-770.	12.9	119
5	The Darfield (Canterbury, New Zealand) Mw 7.1 Earthquake of September 2010: A Preliminary Seismological Report. Seismological Research Letters, 2011, 82, 378-386.	1.9	117
6	Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nature Geoscience, 2019, 12, 475-481.	12.9	101
7	Layered azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise. Earth and Planetary Science Letters, 2010, 297, 95-102.	4.4	99
8	Earthquakes and Tremor Linked to Seamount Subduction During Shallow Slow Slip at the Hikurangi Margin, New Zealand. Journal of Geophysical Research: Solid Earth, 2018, 123, 6769-6783.	3.4	76
9	Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption. Journal of Volcanology and Geothermal Research, 2014, 286, 331-347.	2.1	58
10	The European Upper Mantle as Seen by Surface Waves. Surveys in Geophysics, 2009, 30, 463-501.	4.6	45
11	The Darfield (Canterbury) earthquake of September 2010. Bulletin of the New Zealand Society for Earthquake Engineering, 2010, 43, 215-221.	0.5	43
12	Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 2014, 104, 184-192.	2.3	42
13	Ocean Observations Required to Minimize Uncertainty in Global Tsunami Forecasts, Warnings, and Emergency Response. Frontiers in Marine Science, 2019, 6, .	2.5	38
14	The Character of Accelerations in the Mw 6.2 Christchurch Earthquake. Seismological Research Letters, 2011, 82, 846-852.	1.9	37
15	Fine-scale Relocation of Aftershocks of the 22 February Mw 6.2 Christchurch Earthquake using Double-difference Tomography. Seismological Research Letters, 2011, 82, 839-845.	1.9	36
16	Large Apparent Stresses from the Canterbury Earthquakes of 2010 and 2011. Seismological Research Letters, 2011, 82, 833-838.	1.9	34
17	Mojave-Yavapai boundary zone, southwestern United States: A rifting model for the formation of an isotopically mixed crustal boundary zone. Geology, 2006, 34, 681.	4.4	32
18	Insights into fluid transport mechanisms at White Island from analysis of coupled very long-period (VLP), long-period (LP) and high-frequency (HF) earthquakes. Journal of Volcanology and Geothermal Research, 2017, 343, 75-94.	2.1	31

Bill Fry

#	Article	IF	CITATIONS
19	Quake clamps down on slow slip. Geophysical Research Letters, 2014, 41, 8840-8846.	4.0	27
20	Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 2013, 366, 122-136.	4.4	26
21	Seismicity at the Northern Hikurangi Margin, New Zealand, and Investigation of the Potential Spatial and Temporal Relationships With a Shallow Slow Slip Event. Journal of Geophysical Research: Solid Earth, 2019, 124, 4751-4766.	3.4	25
22	Comparison between low-cost and traditional MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment. Annals of Geophysics, 2012, 54, .	1.0	25
23	The Mw 7.6 Dusky Sound earthquake of 2009. Bulletin of the New Zealand Society for Earthquake Engineering, 2010, 43, 24-40.	0.5	25
24	Strong shaking in recent New Zealand earthquakes. Eos, 2011, 92, 349-351.	0.1	16
25	The Pegasus Bay aftershock sequence of the Mw 7.1 Darfield (Canterbury), New Zealand earthquake. Geophysical Journal International, 2013, 195, 444-459.	2.4	16
26	Threeâ€Dimensional <i>P</i> Wave Velocity Structure of the Northern Hikurangi Margin From the NZ3D Experiment: Evidence for Faultâ€Bound Anisotropy. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020433.	3.4	16
27	Foreshocks and delayed triggering of the 2016 MW7.1 Te Araroa earthquake and dynamic reinvigoration of its aftershock sequence by the MW7.8 KaikÅura earthquake, New Zealand. Earth and Planetary Science Letters, 2018, 482, 265-276.	4.4	15
28	Mantle accommodation of lithospheric shortening as seen by combined surface wave and teleseismic imaging in the South Island, New Zealand. Geophysical Journal International, 2014, 199, 499-513.	2.4	13
29	An Earthquake Simulator for New Zealand. Bulletin of the Seismological Society of America, 2022, 112, 763-778.	2.3	13
30	SMART Subsea Cables for Observing the Earth and Ocean, Mitigating Environmental Hazards, and Supporting the Blue Economy. Frontiers in Earth Science, 2022, 9, .	1.8	13
31	Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy. Journal of Volcanology and Geothermal Research, 2017, 336, 33-50.	2.1	12
32	Remote Triggering of Microearthquakes and Tremor in New Zealand following the 2016 MwÂ7.8 KaikÅura Earthquake. Bulletin of the Seismological Society of America, 2018, 108, 1784-1793.	2.3	11
33	Joint local earthquake and teleseismic inversion for 3-D velocity and Q in New Zealand. Physics of the Earth and Planetary Interiors, 2018, 283, 48-66.	1.9	10
34	Dynamic triggering of earthquakes in the North Island of New Zealand following the 2016 Mw 7.8 KaikÅura earthquake. Earth and Planetary Science Letters, 2021, 557, 116723.	4.4	10
35	Understanding the potential for tsunami generated by earthquakes on the southern Hikurangi subduction interface. New Zealand Journal of Geology, and Geophysics, 2016, 59, 70-85.	1.8	8
36	Multipleâ€Fault, Slow Rupture of the 2016 MwÂ7.8 KaikÅura, New Zealand, Earthquake: Complementary Insights from Teleseismic and Geodetic Data. Bulletin of the Seismological Society of America, 2018, 108, 1774-1783.	2.3	8

Bill Fry

#	Article	IF	CITATIONS
37	Depth variable crustal anisotropy, patterns of crustal weakness, and destructive earthquakes in Canterbury, New Zealand. Earth and Planetary Science Letters, 2014, 392, 50-57.	4.4	7
38	A new scheme for joint surface wave and earthquake travel-time inversion and resulting 3-D velocity model for the western North Island, New Zealand. Physics of the Earth and Planetary Interiors, 2017, 269, 98-111.	1.9	6
39	Seismicity and velocity structure in the vicinity of repeating slow slip earthquakes, northern Hikurangi subduction zone, New Zealand. Earth and Planetary Science Letters, 2021, 563, 116887.	4.4	6
40	Characterising microseismicity in a low seismicity region: applications of short-term broadband seismic arrays in Dunedin, New Zealand. New Zealand Journal of Geology, and Geophysics, 2020, 63, 331-341.	1.8	5
41	The Influence of Basement Terranes on Tectonic Deformation: Joint Earthquake Travelâ€Time and Ambient Noise Tomography of the Southern South Island, New Zealand. Tectonics, 2022, 41, .	2.8	5
42	Implications of the Great <i>M</i> _w Â9.0 Tohokuâ€Oki Earthquake on the Understanding of Natural Hazard in Taiwan and New Zealand. Seismological Research Letters, 2016, 87, 1254-1258.	1.9	4
43	Temporal velocity variations in the northern Hikurangi margin and the relation to slow slip. Earth and Planetary Science Letters, 2022, 584, 117443.	4.4	4
44	Preface to the Focus Section on the Joint Japan–Taiwan–New Zealand National Seismic Hazard Model Collaboration. Seismological Research Letters, 2016, 87, 1236-1239.	1.9	3
45	Seismic Constraint on Heterogeneous Deformation and Stress State in the Forearc of the Hikurangi Subduction Zone, New Zealand. The Seismic Record, 2021, 1, 145-153.	3.1	2
46	Seismicity Rate Change as a Tool to Investigate Delayed and Remote Triggering of the 2010–2011 Canterbury Earthquake Sequence, New Zealand. Bulletin of the Seismological Society of America, 0, , .	2.3	0