Kusumam Joseph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8977615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of chronic autoimmune urticaria with omalizumab. Journal of Allergy and Clinical Immunology, 2008, 122, 569-573.	2.9	240
2	Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 896-900.	7.1	145
3	Formation of Bradykinin: A Major Contributor to the Innate Inflammatory Response. Advances in Immunology, 2005, 86, 159-208.	2.2	115
4	Pathogenic Mechanisms of Bradykinin Mediated Diseases. Advances in Immunology, 2014, 121, 41-89.	2.2	109
5	Pathogenesis of Hereditary Angioedema. Immunology and Allergy Clinics of North America, 2017, 37, 513-525.	1.9	78
6	Cytokeratin 1 and gC1qR Mediate High Molecular Weight Kininogen Binding to Endothelial Cells. Clinical Immunology, 1999, 92, 246-255.	3.2	74
7	Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and Î ³ Î'T-cells. Scientific Reports, 2016, 6, 23794.	3.3	62
8	Factor XII-dependent Contact Activation on Endothelial Cells and Binding Proteins gC1qR and Cytokeratin 1. Thrombosis and Haemostasis, 2001, 85, 119-124.	3.4	55
9	Interaction of high molecular weight kininogen binding proteins on endothelial cells. Thrombosis and Haemostasis, 2004, 91, 61-70.	3.4	55
10	Oxidative Stress Sensitizes Retinal Pigmented Epithelial (RPE) Cells to Complement-mediated Injury in a Natural Antibody-, Lectin Pathway-, and Phospholipid Epitope-dependent Manner. Journal of Biological Chemistry, 2013, 288, 12753-12765.	3.4	55
11	Factor XII–independent cleavage of high-molecular-weight kininogen by prekallikrein and inhibition by C1 inhibitor. Journal of Allergy and Clinical Immunology, 2009, 124, 143-149.	2.9	49
12	Bradykinin formation. Clinical Reviews in Allergy and Immunology, 1998, 16, 403-429.	6.5	47
13	Factor XII–independent activation of the bradykinin-forming cascade: Implications for the pathogenesis of hereditary angioedema types I and II. Journal of Allergy and Clinical Immunology, 2013, 132, 470-475.	2.9	46
14	Studies of the mechanisms of bradykinin generation in hereditary angioedema plasma. Annals of Allergy, Asthma and Immunology, 2008, 101, 279-286.	1.0	42
15	Activation of the Kinin-Forming Cascade on the Surface of Endothelial Cells. Biological Chemistry, 2001, 382, 71-5.	2.5	41
16	The complement and contact activation systems: partnership in pathogenesis beyond angioedema. Immunological Reviews, 2016, 274, 281-289.	6.0	41
17	Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent. Clinical Reviews in Allergy and Immunology, 2016, 51, 207-215.	6.5	41
18	Deficiency of plasminogen activator inhibitor 2 in plasma of patients with hereditary angioedema with normal C1 inhibitor levels. Journal of Allergy and Clinical Immunology, 2016, 137, 1822-1829.e1.	2.9	38

Киѕимам Јоѕерн

#	Article	IF	CITATIONS
19	Cytokine and estrogen stimulation of endothelial cells augments activation of the prekallikrein-high molecular weight kininogen complex: Implications for hereditary angioedema. Journal of Allergy and Clinical Immunology, 2017, 140, 170-176.	2.9	34
20	Local Production of the Alternative Pathway Component Factor B Is Sufficient to Promote Laser-Induced Choroidal Neovascularization. , 2015, 56, 1850.		33
21	Treatment of episodes of hereditary angioedema with C1 inhibitor: serial assessment of observed abnormalities of the plasma bradykinin-forming pathway and fibrinolysis. Annals of Allergy, Asthma and Immunology, 2010, 104, 50-54.	1.0	26
22	Protease activity in single-chain prekallikrein. Blood, 2020, 135, 558-567.	1.4	22
23	Blood Clotting and the Pathogenesis of Types I and II Hereditary Angioedema. Clinical Reviews in Allergy and Immunology, 2021, 60, 348-356.	6.5	17
24	In vitro comparison of bradykinin degradation by aliskiren, a renin inhibitor, and an inhibitor of angiotensin-converting enzyme. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 321-327.	1.7	8
25	How omalizumab came to be studied as a therapy for chronic spontaneous/idiopathic urticaria. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 648.	3.8	7
26	Reply. Journal of Allergy and Clinical Immunology, 2017, 139, 1720-1721.	2.9	4
27	Natural immunoglobulin M-based delivery of a complement alternative pathway inhibitor in mouse models of retinal degeneration. Experimental Eye Research, 2021, 207, 108583.	2.6	4
28	gC1qR Antibody Can Modulate Endothelial Cell Permeability in Angioedema. Inflammation, 2022, 45, 116-128.	3.8	3
29	Regulatory Mechanism of G Protein-Coupled Receptor Trafficking to the Plasma Membrane. Methods in Enzymology, 2013, 521, 131-150.	1.0	1
30	Angioedema and Shear Stress Modulate Endothelial Permeability Through gC1qR. FASEB Journal, 2019, 33, 542.15.	0.5	1
31	Legends of Allergy and Immunology: Allen Kaplan. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3290-3292.	5.7	0
32	Interaction of High Molecular Weight Kininogen with Endothelial Cell Receptors suPAR, gC1qR and Cytokeratin 1 by Surface Plasmon Resonance (BiaCore) Blood, 2005, 106, 2666-2666.	1.4	0