Sandra Rivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8977573/publications.pdf Version: 2024-02-01

32	1,149	³⁹³⁹⁸² 19	414034 32
papers	citations	h-index	g-index
32	32	32	1674
all docs	docs citations	times ranked	citing authors

SANDDA RIVAS

#	Article	IF	CITATIONS
1	Sustainable Production of Furfural in Biphasic Reactors Using Terpenoids and Hydrophobic Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 10266-10275.	3.2	21
2	Single-Stage Fractionation of Vine Shoots Using Microwave Heating. Applied Sciences (Switzerland), 2021, 11, 7954.	1.3	3
3	Protic, Aprotic, and Choline-Derived Ionic Liquids: Toward Enhancing the Accessibility of Hardwood and Softwood. ACS Sustainable Chemistry and Engineering, 2020, 8, 1362-1370.	3.2	22
4	A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses. Food and Bioproducts Processing, 2020, 123, 398-408.	1.8	12
5	Performance of 1-(3-Sulfopropyl)-3-Methylimidazolium Hydrogen Sulfate as a Catalyst for Hardwood Upgrading into Bio-Based Platform Chemicals. Catalysts, 2020, 10, 937.	1.6	2
6	Development of Pretreatment Strategies for the Fractionation of Hazelnut Shells in the Scope of Biorefinery. Agronomy, 2020, 10, 1568.	1.3	10
7	Pretreatment of Hazelnut Shells as a Key Strategy for the Solubilization and Valorization of Hemicelluloses into Bioactive Compounds. Agronomy, 2020, 10, 760.	1.3	16
8	Application of microscopy techniques for a better understanding of biomass pretreatment. Industrial Crops and Products, 2019, 138, 111466.	2.5	8
9	Biorefinery processes for the valorization of Miscanthus polysaccharides: from constituent sugars to platform chemicals. Industrial Crops and Products, 2019, 134, 309-317.	2.5	29
10	Autohydrolysis and microwave ionic liquid pretreatment of Pinus radiata: Imaging visualization and analysis to understand enzymatic digestibility. Industrial Crops and Products, 2019, 134, 328-337.	2.5	22
11	Extraction of phenolic compounds from hazelnut shells by green processes Journal of Food Engineering, 2019, 255, 1-8.	2.7	47
12	Production of 5-Hydroxymethylfurfural from pine wood via biorefinery technologies based on fractionation and reaction in ionic liquids. BioResources, 2019, 14, 4733-4747.	0.5	9
13	Multi-valorisation of giant reed (Arundo Donax L.) to give levulinic acid and valuable phenolic antioxidants. Industrial Crops and Products, 2018, 112, 6-17.	2.5	30
14	A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for γ-Valerolactone Sustainable Preparation. Catalysts, 2018, 8, 169.	1.6	29
15	Aqueous fractionation of hardwood: selective glucuronoxylan solubilisation and purification of the reaction products. Journal of Chemical Technology and Biotechnology, 2017, 92, 367-374.	1.6	13
16	Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Applied Catalysis B: Environmental, 2017, 206, 364-377.	10.8	101
17	Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung, 2016, 70, 901-910.	0.9	30
18	Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 2016, 120, 170-180.	4.6	42

SANDRA RIVAS

#	Article	IF	CITATIONS
19	Furfural production using ionic liquids: A review. Bioresource Technology, 2016, 202, 181-191.	4.8	219
20	Sustainable conversion of Pinus pinaster wood into biofuel precursors: A biorefinery approach. Fuel, 2016, 164, 51-58.	3.4	42
21	Sustainable Production of Levulinic Acid from the Cellulosic Fraction of <i>Pinus Pinaster</i> Wood: Operation in Aqueous Media Under Microwave Irradiation. Journal of Wood Chemistry and Technology, 2015, 35, 315-324.	0.9	30
22	Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 8093-8102.	2.4	59
23	Acidic processing of hemicellulosic saccharides from pine wood: Product distribution and kinetic modeling. Bioresource Technology, 2014, 162, 192-199.	4.8	24
24	Non-isothermal autohydrolysis of nixtamalized maize pericarp: Production of nutraceutical extracts. LWT - Food Science and Technology, 2014, 58, 550-556.	2.5	16
25	Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing. Journal of Membrane Science, 2013, 428, 281-289.	4.1	19
26	Aqueous processing of Pinus pinaster wood: Kinetics of polysaccharide breakdown. Chemical Engineering Journal, 2013, 231, 380-387.	6.6	18
27	Manufacture of Levulinic Acid from Pine Wood Hemicelluloses: A Kinetic Assessment. Industrial & Engineering Chemistry Research, 2013, 52, 3951-3957.	1.8	22
28	Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry, 2013, 141, 495-502.	4.2	51
29	Production of furans from hemicellulosic saccharides in biphasic reaction systems. Holzforschung, 2013, 67, 923-929.	0.9	16
30	Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Marine Drugs, 2013, 11, 4612-4627.	2.2	91
31	Manufacture and Properties of Bifidogenic Saccharides Derived from Wood Mannan. Journal of Agricultural and Food Chemistry, 2012, 60, 4296-4305.	2.4	61
32	Simultaneous lactic acid and xylitol production from vine trimming wastes. Journal of the Science of Food and Agriculture, 2007, 87, 1603-1612.	1.7	35