
Rafael R Pappalardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Coupled EXAFS–Molecular Dynamics Study on PuO ₂ ⁺ and NpO ₂ ⁺ Hydration: The Importance of Electron Correlation in Force-Field Building. Inorganic Chemistry, 2022, 61, 8703-8714.	4.0	5
2	Hydration of Heavy Alkaline-Earth Cations Studied by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. Inorganic Chemistry, 2021, 60, 13578-13587.	4.0	9
3	Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water. Molecules, 2020, 25, 5250.	3.8	2
4	Revisiting the cobalt(II) hydration from molecular dynamics and X-ray absorption spectroscopy. Molecular Physics, 2019, 117, 3320-3328.	1.7	5
5	A general study of actinyl hydration by molecular dynamics simulations using <i>ab initio</i> force fields. Journal of Chemical Physics, 2019, 150, 104504.	3.0	13
6	Hydration Structure of the Elusive Ac(III) Aqua Ion: Interpretation of X-ray Absorption Spectroscopy (XAS) Spectra on the Basis of Molecular Dynamics (MD) Simulations. Inorganic Chemistry, 2019, 58, 2777-2783.	4.0	14
7	Extracting the Americyl Hydration from an Americium Cationic Mixture in Solution: A Combined X-ray Absorption Spectroscopy and Molecular Dynamics Study. Inorganic Chemistry, 2018, 57, 8089-8097.	4.0	9
8	Effect of Basicity on the Hydrolysis of the Bi(III) Aqua Ion in Solution: An Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry A, 2018, 122, 1905-1915.	2.5	12
9	Development of a polarizable and flexible model of the hydrated ion potential to study the intriguing case of Sc(III) hydration. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	3
10	The hydration structure of the heavy-alkalines Rb ⁺ and Cs ⁺ through molecular dynamics and X-ray absorption spectroscopy: surface clusters and eccentricity. Physical Chemistry Chemical Physics, 2017, 19, 28993-29004.	2.8	43
11	A hydrated ion model of [UO2]2+ in water: Structure, dynamics, and spectroscopy from classical molecular dynamics. Journal of Chemical Physics, 2016, 145, 224502.	3.0	17
12	Identifying Coordination Geometries of Metal Aquaions in Water: Application to the Case of Lanthanoid and Actinoid Hydrates. Journal of Physical Chemistry Letters, 2016, 7, 4275-4280.	4.6	25
13	Hydration of Two Cisplatin Aqua-Derivatives Studied by Quantum Mechanics and Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2015, 11, 1735-1744.	5.3	28
14	Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: The hydration of Cf3+. Journal of Chemical Physics, 2014, 140, 214104.	3.0	18
15	Hydration of Cisplatin Studied by an Effective Ab Initio Pair Potential Including Solute–Solvent Polarization. Journal of Chemical Theory and Computation, 2013, 9, 4562-4573.	5.3	27
16	Quantum-Mechanical Study on the Aquaions and Hydrolyzed Species of Po(IV), Te(IV), and Bi(III) in Water. Journal of Physical Chemistry B, 2012, 116, 14903-14914.	2.6	7
17	Solving the Hydration Structure of the Heaviest Actinide Aqua Ion Known: The Californium(III) Case. Angewandte Chemie - International Edition, 2010, 49, 3811-3815.	13.8	64
18	An Ab Initio Molecular Dynamics Study on the Hydrolysis of the Po(IV) Aquaion in Water. Journal of Physical Chemistry B, 2010, 114, 12866-12874.	2.6	17

RAFAEL R PAPPALARDO

#	Article	IF	CITATIONS
19	General Quantum-Mechanical Study on the Hydrolysis Equilibria for a Tetravalent Aquaion: The Extreme Case of the Po(IV) in Water. Journal of Physical Chemistry B, 2009, 113, 487-496.	2.6	14
20	Aqueous Pd ^{II} and Pt ^{II} : Anionic Hydration Revealed by Car–Parrinello Simulations. ChemPhysChem, 2008, 9, 237-240.	2.1	32
21	Combined Experimental and Theoretical Approach to the Study of Structure and Dynamics of the Most Inert Aqua Ion [Ir(H2O)6]3+in Aqueous Solution. Journal of Physical Chemistry B, 2007, 111, 8223-8233.	2.6	38
22	Hydration Structure and Dynamic Properties of the Square Planar Pt(II) Aquaion Compared to the Pd(II) Case. Theoretical Chemistry Accounts, 2006, 115, 196-203.	1.4	34
23	Understanding the Hydration Structure of Square-Planar Aquaions:Â The [Pd(H2O)4]2+Case. Journal of Physical Chemistry B, 2004, 108, 15851-15855.	2.6	56
24	Analysis of the Opposite Solvent Effects Caused by Different Solute Cavities on the Metalâ^'Water Distance of Monoatomic Cation Hydrates. Journal of Physical Chemistry B, 2002, 106, 1118-1123.	2.6	42
25	First-Principles Ionâ^`Water Interaction Potentials for Highly Charged Monatomic Cations. Computer Simulations of Al3+, Mg2+, and Be2+in Water. Journal of the American Chemical Society, 1999, 121, 3175-3184.	13.7	123
26	Dynamics of a Highly Charged Ion in Aqueous Solutions:Â MD Simulations of Dilute CrCl3Aqueous Solutions Using Interaction Potentials Based on the Hydrated Ion Concept. Journal of Physical Chemistry B, 1998, 102, 3272-3282.	2.6	41
27	A molecular dynamics study of the Cr3+ hydration based on a fully flexible hydrated ion model. Journal of Chemical Physics, 1998, 109, 1445-1455.	3.0	49
28	Application of the Hydrated Ion Concept for Modeling Aqueous Solutions Containing Highly Charged Ions: A Monte Carlo Simulation of Cr3+in Water Using an ab Initio Intermolecular Potentialâ€. The Journal of Physical Chemistry, 1996, 100, 11748-11754.	2.9	53
29	Recovering the concept of the hydrated ion for modeling ionic solutions: a Monte Carlo study of zinc(2+) in water. The Journal of Physical Chemistry, 1993, 97, 4500-4504.	2.9	72
30	Effects of the solvent reaction field on the geometrical structures of hexahydrate metallic cations. The Journal of Physical Chemistry, 1991, 95, 8928-8932.	2.9	84