Thomas Mccleskey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976511/publications.pdf

Version: 2024-02-01

43 papers

2,190 citations

257450 24 h-index 254184 43 g-index

43 all docs 43 docs citations

43 times ranked

2769 citing authors

#	Article	IF	Citations
1	The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chemistry, 2007, 9, 449.	9.0	387
2	Polymer-assisted deposition of metal-oxide films. Nature Materials, 2004, 3, 529-532.	27.5	308
3	Structural and Photoelectrochemical Properties of BiVO ₄ Thin Films. Journal of Physical Chemistry C, 2008, 112, 6099-6102.	3.1	144
4	Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. Thermochimica Acta, 2009, 491, 118-120.	2.7	112
5	Polymer-assisted-deposition: a chemical solution route for a wide range of materials. Chemical Society Reviews, 2013, 42, 439-449.	38.1	90
6	Predicting9Be Nuclear Magnetic Resonance Chemical Shielding Tensors Utilizing Density Functional Theory. Journal of the American Chemical Society, 2004, 126, 14651-14658.	13.7	84
7	Green luminescent zinc oxide films prepared by polymer-assisted deposition with rapid thermal process. Thin Solid Films, 2005, 492, 101-104.	1.8	66
8	Optical and Structural Properties of Single Phase Epitaxial pâ€Type Transparent Oxide Thin Films. Advanced Materials, 2007, 19, 3604-3607.	21.0	64
9	Structural and dielectric properties of epitaxial Ba1â^'xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Applied Physics Letters, 2004, 85, 5007-5009.	3.3	63
10	Self-Assembled Epitaxial Nanocomposite BaTiO3â^'NiFe2O4Films Prepared by Polymer-Assisted Deposition. Journal of the American Chemical Society, 2007, 129, 14132-14133.	13.7	54
11	Controlling Oxidation States in Uranium Oxides through Epitaxial Stabilization. Advanced Materials, 2007, 19, 3559-3563.	21.0	53
12	Epitaxial Superconducting $\hat{\Gamma}$ -MoN Films Grown by a Chemical Solution Method. Journal of the American Chemical Society, 2011, 133, 20735-20737.	13.7	48
13	Chemical Solution Deposition of Epitaxial Carbide Films. Journal of the American Chemical Society, 2010, 132, 2516-2517.	13.7	44
14	Porous Metalâ^'Organic Frameworks Containing Alkali-Bridged Two-Fold Interpenetration: Synthesis, Gas Adsorption, and Fluorescence Properties. Crystal Growth and Design, 2010, 10, 1301-1306.	3.0	42
15	Controlling Crystal Structure and Oxidation State in Molybdenum Nitrides through Epitaxial Stabilization. Journal of Physical Chemistry C, 2011, 115, 17880-17883.	3.1	37
16	Epitaxial growth of Eu2O3 thin films on LaAlO3 substrates by polymer-assisted deposition. Applied Physics Letters, 2004, 85, 3426-3428.	3.3	35
17	Ultra-trace determination of beryllium in occupational hygiene samples by ammonium bifluoride extraction and fluorescence detection using hydroxybenzoquinoline sulfonate. Analytica Chimica Acta, 2007, 584, 281-286.	5.4	35
18	Validation of a standardized portable fluorescence method for determining trace beryllium in workplace air and wipe samples. Journal of Environmental Monitoring, 2006, 8, 619.	2.1	33

#	Article	IF	Citations
19	A Chemical Solution Approach to Epitaxial Metal Nitride Thin Films. Advanced Materials, 2009, 21, 193-197.	21.0	32
20	Novel Binding of Beryllium to Dicarboxyimidazole-Based Model Compounds and Polymers. Inorganic Chemistry, 2005, 44, 5761-5769.	4.0	31
21	Manipulating Magnetoresistance Near Room Temperature in La0.67Sr0.33MnO3/La0.67Ca0.33MnO3 Films Prepared by Polymer Assisted Deposition. Advanced Materials, 2006, 18, 2695-2698.	21.0	31
22	Nucleation and growth of epitaxial metal-oxide films based on polymer-assisted deposition. Chemical Society Reviews, 2014, 43, 2141-2146.	38.1	27
23	Epitaxial Ternary Nitride Thin Films Prepared by a Chemical Solution Method. Journal of the American Chemical Society, 2008, 130, 15224-15225.	13.7	26
24	Highly Conductive Films of Layered Ternary Transitionâ€Metal Nitrides. Angewandte Chemie - International Edition, 2009, 48, 1490-1493.	13.8	26
25	Electronic structure and O K-edge XAS spectroscopy of U3O8. Journal of Electron Spectroscopy and Related Phenomena, 2014, 194, 81-87.	1.7	26
26	Structural and Ferromagnetic Properties of Epitaxial SrRuO3 Thin Films Obtained by Polymer-Assisted Deposition. Journal of Physical Chemistry B, 2007, 111, 7497-7500.	2.6	23
27	Magnetic Properties of Self-Assembled Epitaxial Nanocomposite CoFe2O4:SrTiO3 and CoFe2O4:MgO Films. Journal of Physical Chemistry C, 2011, 115, 25338-25342.	3.1	23
28	High Surface Area Molybdenum Nitride Support for Fuel Cell Electrodes. Journal of the Electrochemical Society, 2011, 158, B1255.	2.9	22
29	Polymer-assisted chemical solution approach to YVO4:Eu nanoparticle networks. Journal of Materials Chemistry, 2012, 22, 5835.	6.7	21
30	Mixed-Valence Perovskite Thin Films by Polymer-Assisted Deposition. Journal of the American Ceramic Society, 2008, 91, 1858-1863.	3.8	20
31	Upper critical magnetic field and vortex-free state in very thin epitaxial Î'-MoN films grown by polymer-assisted deposition. Superconductor Science and Technology, 2013, 26, 105023.	3.5	19
32	Facile Chemical Solution Deposition of Highâ€Mobility Epitaxial Germanium Films on Silicon. Angewandte Chemie - International Edition, 2010, 49, 1782-1785.	13.8	18
33	Amorphous Silica Nanoparticles Embedded in Epitaxial SrTiO ₃ and CoFe ₂ O ₄ Matrices. Angewandte Chemie - International Edition, 2008, 47, 5768-5771.	13.8	17
34	Encapsulation of the Be ^{II} Cation: Spectroscopic and Computational Study. Inorganic Chemistry, 2013, 52, 3969-3975.	4.0	17
35	Ferroic metal-oxide films grown by polymer assisted deposition. Thin Solid Films, 2007, 515, 6411-6415.	1.8	15
36	Epitaxial GaN Thin Films Prepared by Polymer-Assisted Deposition. Journal of Physical Chemistry C, 2008, 112, 20535-20538.	3.1	15

#	Article	IF	Citations
37	Vertical connection of carbon nanotubes to silicon at room temperature using a chemical route. Carbon, 2009, 47, 933-937.	10.3	15
38	Nanoscale titania ceramic composite supports for PEM fuel cells. Journal of Materials Research, 2012, 27, 2046-2054.	2.6	15
39	Preparation of Epitaxial Uranium Dicarbide Thin Films by Polymer-Assisted Deposition. Chemistry of Materials, 2013, 25, 4373-4377.	6.7	15
40	Chemical Solution Route to Conformal Phosphor Coatings on Nanostructures. Advanced Materials, 2008, 20, 4704-4707.	21.0	13
41	Extraction and Optical Fluorescence Method for the Measurement of Trace Beryllium in Soils. Environmental Science & Environmen	10.0	13
42	BaTiO ₃ -RELATED FERROELECTRIC THIN FILMS BY POLYMER ASSISTED DEPOSITION. Integrated Ferroelectrics, 2008, 100, 132-139.	0.7	7
43	Engineered Nano-Scale Ceramic Supports for PEM Fuel Cells. ECS Transactions, 2011, 30, 83-90.	0.5	4