Daniel C Fabrycky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8976381/publications.pdf

Version: 2024-02-01

10956 12910 21,109 137 71 131 citations h-index g-index papers 138 138 138 5709 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction. Astrophysical Journal, 2007, 669, 1298-1315.	1.6	1,087
2	PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM <i>KEPLER</i> . Astrophysical Journal, Supplement Series, 2012, 201, 15.	3.0	871
3	CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY <i>KEPLER</i> II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA. Astrophysical Journal, 2011, 736, 19.	1.6	859
4	PLANETARY CANDIDATES OBSERVED BY <i>KEPLER</i> . III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA. Astrophysical Journal, Supplement Series, 2013, 204, 24.	3.0	823
5	The Occurrence and Architecture of Exoplanetary Systems. Annual Review of Astronomy and Astrophysics, 2015, 53, 409-447.	8.1	636
6	Kepler-16: A Transiting Circumbinary Planet. Science, 2011, 333, 1602-1606.	6.0	608
7	ARCHITECTURE AND DYNAMICS OF <i>KEPLER</i> 'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS. Astrophysical Journal, Supplement Series, 2011, 197, 8.	3.0	593
8	A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature, 2011, 470, 53-58.	13.7	553
9	HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES. Astrophysical Journal Letters, 2010, 718, L145-L149.	3.0	542
10	ARCHITECTURE OF <i>KEPLER </i> 'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES. Astrophysical Journal, 2014, 790, 146.	1.6	536
11	<i>KEPLER</i> 'S FIRST ROCKY PLANET: KEPLER-10b. Astrophysical Journal, 2011, 729, 27.	1.6	473
12	MASSES, RADII, AND ORBITS OF SMALL <i>KEPLER</i> PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS. Astrophysical Journal, Supplement Series, 2014, 210, 20.	3.0	418
13	Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature, 2012, 481, 475-479.	13.7	385
14	<i>KEPLER</i> ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE. Astronomical Journal, 2011, 142, 160.	1.9	358
15	Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations. Science, 2010, 330, 51-54.	6.0	339
16	Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities. Science, 2012, 337, 556-559.	6.0	335
17	Kepler-47: A Transiting Circumbinary Multiplanet System. Science, 2012, 337, 1511-1514.	6.0	312
18	The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au. Astronomical Journal, 2019, 158, 13.	1.9	270

#	Article	IF	CITATIONS
19	ALMOST ALL OF <i>KEPLER</i> 'S MULTIPLE-PLANET CANDIDATES ARE PLANETS. Astrophysical Journal, 2012, 750, 112.	1.6	266
20	A seven-planet resonant chain in TRAPPIST-1. Nature Astronomy, 2017, 1, .	4.2	263
21	Stellar Spin-Orbit Misalignment in a Multiplanet System. Science, 2013, 342, 331-334.	6.0	262
22	THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX. Astrophysical Journal, 2013, 768, 14.	1.6	253
23	The nature of the TRAPPIST-1 exoplanets. Astronomy and Astrophysics, 2018, 613, A68.	2.1	246
24	RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e. Astrophysical Journal, 2010, 722, 937-953.	1.6	244
25	A SUPER-EARTH TRANSITING A NAKED-EYE STAR. Astrophysical Journal Letters, 2011, 737, L18.	3.0	243
26	EXOPLANETARY SPIN-ORBIT ALIGNMENT: RESULTS FROM THE ENSEMBLE OF ROSSITER-MCLAUGHLIN OBSERVATIONS. Astrophysical Journal, 2009, 696, 1230-1240.	1.6	227
27	Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR. Astrophysical Journal, 2012, 745, 120.	1.6	218
28	MODELING (i) KEPLER (i) TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM. Astrophysical Journal, 2011, 727, 24.	1.6	215
29	THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b. Astrophysical Journal, 2012, 758, 87.	1.6	213
30	Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 2013, 340, 587-590.	6.0	213
31	CHARACTERIZING THE COOL KOIs. III. KOI 961: A SMALL STAR WITH LARGE PROPER MOTION AND THREE SMALL PLANETS. Astrophysical Journal, 2012, 747, 144.	1.6	209
32	STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE. Astrophysical Journal Letters, 2014, 787, L2.	3.0	207
33	KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars. Science, 2011, 331, 562-565.	6.0	203
34	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS. Astrophysical Journal, 2012, 750, 114.	1.6	199
35	ON THE TRIPLE ORIGIN OF BLUE STRAGGLERS. Astrophysical Journal, 2009, 697, 1048-1056.	1.6	198
36	Alignment of the stellar spin with the orbits of a three-planet system. Nature, 2012, 487, 449-453.	13.7	184

#	Article	IF	CITATIONS
37	Transit timing observations from Kepler $\hat{a} \in VII$. Confirmation of 27 planets in 13 multiplanet systems via transit timing variations and orbital stability. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1077-1087.	1.6	174
38	Two Earth-sized planets orbiting Kepler-20. Nature, 2012, 482, 195-198.	13.7	172
39	Kepler constraints on planets near hot Jupiters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7982-7987.	3.3	172
40	KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, <i>WARM-SPITZER</i> PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS. Astrophysical Journal, Supplement Series, 2011, 197, 7.	3.0	171
41	A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS. Astrophysical Journal Letters, 2011, 732, L24.	3.0	167
42	MERGERS AND OBLIQUITIES IN STELLAR TRIPLES. Astrophysical Journal, 2014, 793, 137.	1.6	166
43	THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION. Astrophysical Journal, Supplement Series, 2011, 197, 14.	3.0	162
44	Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides. Planetary Science Journal, 2021, 2, 1.	1.5	161
45	A resonant chain of four transiting, sub-Neptune planets. Nature, 2016, 533, 509-512.	13.7	159
46	TRANSIT TIMING OBSERVATIONS FROM KEPLER. IX. CATALOG OF THE FULL LONG-CADENCE DATA SET. Astrophysical Journal, Supplement Series, 2016, 225, 9.	3.0	158
47	Transit timing observations from Keplerâ \in f- III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2342-2354.	1.6	151
48	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . VIII. CATALOG OF TRANSIT TIMING MEASUREMENTS OF THE FIRST TWELVE QUARTERS. Astrophysical Journal, Supplement Series, 2013, 208, 16.	3.0	147
49	SECURE MASS MEASUREMENTS FROM TRANSIT TIMING: 10 KEPLER EXOPLANETS BETWEEN 3 AND 8 M _⊕ WITH DIVERSE DENSITIES AND INCIDENT FLUXES. Astrophysical Journal, 2016, 820, 39.	1.6	147
50	ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES. Astrophysical Journal, 2013, 770, 131.	1.6	145
51	<i>KEPLER</i> ECLIPSING BINARY STARS. IV. PRECISE ECLIPSE TIMES FOR CLOSE BINARIES AND IDENTIFICATION OF CANDIDATE THREE-BODY SYSTEMS. Astronomical Journal, 2014, 147, 45.	1.9	143
52	STABILITY OF THE DIRECTLY IMAGED MULTIPLANET SYSTEM HR 8799: RESONANCE AND MASSES. Astrophysical Journal, 2010, 710, 1408-1421.	1.6	141
53	CHARACTERIZING THE COOL KOIS. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY. Astrophysical Journal, 2013, 764, 105.	1.6	132
54	ON THE SPIN-ORBIT MISALIGNMENT OF THE XO-3 EXOPLANETARY SYSTEM. Astrophysical Journal, 2009, 700, 302-308.	1.6	131

#	Article	IF	CITATIONS
55	THE KEPLER-19 SYSTEM: A TRANSITING 2.2 <i>R</i> _{âš•} PLANET AND A SECOND PLANET DETECTED VI TRANSIT TIMING VARIATIONS. Astrophysical Journal, 2011, 743, 200.	A _{1.6}	130
56	KEPLER 453 bâ€"THE 10th <i>KEPLER</i> TRANSITING CIRCUMBINARY PLANET. Astrophysical Journal, 2015, 809, 26.	1.6	130
57	KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES. Astrophysical Journal, 2012, 749, 15.	1.6	125
58	THE DISTRIBUTION OF TRANSIT DURATIONS FOR <i>KEPLER</i> PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES. Astrophysical Journal, Supplement Series, 2011, 197, 1.	3.0	124
59	THE TRANSIT LIGHT CURVE PROJECT. XIII. SIXTEEN TRANSITS OF THE SUPER-EARTH GJ 1214b. Astrophysical Journal, 2011, 730, 82.	1.6	120
60	KEPLER-79'S LOW DENSITY PLANETS. Astrophysical Journal, 2014, 785, 15.	1.6	120
61	A DYNAMICAL ANALYSIS OF THE KEPLER-80 SYSTEM OF FIVE TRANSITING PLANETS. Astronomical Journal, 2016, 152, 105.	1.9	115
62	USING STAR SPOTS TO MEASURE THE SPIN-ORBIT ALIGNMENT OF TRANSITING PLANETS. Astrophysical Journal Letters, 2011, 740, L10.	3.0	112
63	ON THE RELATIVE SIZES OF PLANETS WITHIN <i>KEPLER</i> MULTIPLE-CANDIDATE SYSTEMS. Astrophysical Journal, 2013, 763, 41.	1.6	112
64	KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM. Astrophysical Journal, Supplement Series, 2011, 197, 5.	3.0	103
65	The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature, 2015, 522, 321-323.	13.7	103
66	KEPLER-1647B: THE LARGEST AND LONGEST-PERIOD KEPLER TRANSITING CIRCUMBINARY PLANET. Astrophysical Journal, 2016, 827, 86.	1.6	101
67	Cassini States with Dissipation: Why Obliquity Tides Cannot Inflate Hot Jupiters. Astrophysical Journal, 2007, 665, 754-766.	1.6	100
68	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS. Astrophysical Journal, Supplement Series, 2011, 197, 2.	3.0	98
69	Dynamical Constraints on the HR 8799 Planets with GPI. Astronomical Journal, 2018, 156, 192.	1.9	95
70	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS. Astrophysical Journal, 2012, 750, 113.	1.6	94
71	A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm <i>Spitzer</i> IRAC Observations. Publications of the Astronomical Society of the Pacific, 2010, 122, 1341-1352.	1.0	92
72	FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES. Astrophysical Journal, 2010, 725, 1226-1241.	1.6	91

#	Article	IF	Citations
73	PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2 SYSTEM. Astrophysical Journal, 2012, 761, 53.	1.6	89
74	LARGE ECCENTRICITY, LOW MUTUAL INCLINATION: THE THREE-DIMENSIONAL ARCHITECTURE OF A HIERARCHICAL SYSTEM OF GIANT PLANETS. Astrophysical Journal, 2014, 791, 89.	1.6	89
7 5	A THIRD HOT WHITE DWARF COMPANION DETECTED BY <i>KEPLER</i> . Astrophysical Journal, 2011, 728, 139.	1.6	88
76	Observational constraints on tidal effects using orbital eccentricitiesa~ Monthly Notices of the Royal Astronomical Society, 2012, 422, 3151-3177.	1.6	88
77	Determining eccentricities of transiting planets: a divide in the mass-period plane. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1278-1284.	1.6	83
78	No circumbinary planets transiting the tightest <i>Kepler</i> binaries â€" a possible fingerprint of a third star. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3555-3568.	1.6	78
79	ASTROMETRIC CONFIRMATION AND PRELIMINARY ORBITAL PARAMETERS OF THE YOUNG EXOPLANET 51 ERIDANI b WITH THE GEMINI PLANET IMAGER. Astrophysical Journal Letters, 2015, 814, L3.	3.0	77
80	SPIN-ORBIT ALIGNMENT FOR THE CIRCUMBINARY PLANET HOST KEPLER-16 A. Astrophysical Journal Letters, 2011, 741, L1.	3.0	75
81	TRANSIT TIMING OBSERVATIONS FROM (i) KEPLER (/i). V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS. Astrophysical Journal, 2012, 756, 185.	1.6	75
82	REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10*. Astrophysical Journal, 2016, 819, 83.	1.6	74
83	ON THE MISALIGNMENT OF THE DIRECTLY IMAGED PLANET Î ² PICTORIS b WITH THE SYSTEM'S WARPED INNER DISK. Astrophysical Journal Letters, 2011, 743, L17.	3.0	70
84	THE BANANA PROJECT. V. MISALIGNED AND PRECESSING STELLAR ROTATION AXES IN CV VELORUM. Astrophysical Journal, 2014, 785, 83.	1.6	68
85	KEPLER-108: A MUTUALLY INCLINED GIANT PLANET SYSTEM. Astronomical Journal, 2017, 153, 45.	1.9	67
86	Discovery of a Third Transiting Planet in the Kepler-47 Circumbinary System. Astronomical Journal, 2019, 157, 174.	1.9	65
87	THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION. Astrophysical Journal, 2012, 761, 163.	1.6	62
88	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS. Astrophysical Journal, 2012, 756, 186.	1.6	62
89	The Featureless Transmission Spectra of Two Super-puff Planets. Astronomical Journal, 2020, 159, 57.	1.9	61
90	ON THE FATE OF UNSTABLE CIRCUMBINARY PLANETS: TATOOINE'S CLOSE ENCOUNTERS WITH A DEATH STARSTOPHYSICAL Journal, 2016, 818, 6.	AR _{I.6}	59

#	Article	IF	CITATIONS
91	TOI-1338: TESS' First Transiting Circumbinary Planet. Astronomical Journal, 2020, 159, 253.	1.9	58
92	A SEARCH FOR ADDITIONAL PLANETS IN THE NASA <i>EPOXI</i> OBSERVATIONS OF THE EXOPLANET SYSTEM GJ 436. Astrophysical Journal, 2010, 716, 1047-1059.	1.6	56
93	COMPACT PLANETARY SYSTEMS PERTURBED BY AN INCLINED COMPANION. II. STELLAR SPIN-ORBIT EVOLUTION. Astrophysical Journal, 2014, 789, 111.	1.6	54
94	Evidence That the Directly Imaged Planet HD 131399 Ab Is a Background Star. Astronomical Journal, 2017, 154, 218.	1.9	52
95	Outer-planet scattering can gently tilt an inner planetary system. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1709-1717.	1.6	52
96	Mass, Density, and Formation Constraints in the Compact, Sub-Earth Kepler-444 System including Two Mars-mass Planets. Astrophysical Journal Letters, 2017, 838, L11.	3.0	51
97	Catalog of Fundamentalâ€Mode RR Lyrae Stars in the Galactic Bulge from the Optical Gravitational Lensing Experiment. Astrophysical Journal, 2006, 651, 197-210.	1.6	42
98	COMPACT PLANETARY SYSTEMS PERTURBED BY AN INCLINED COMPANION. I. VECTORIAL REPRESENTATION OF THE SECULAR MODEL. Astrophysical Journal, 2014, 789, 110.	1.6	41
99	Kepler-11 is a Solar Twin: Revising the Masses and Radii of Benchmark Planets via Precise Stellar Characterization. Astrophysical Journal, 2017, 839, 94.	1.6	41
100	TIME VARIATION OF (i) KEPLER (/i) TRANSITS INDUCED BY STELLAR SPOTSâ€"A WAY TO DISTINGUISH BETWEEN PROGRADE AND RETROGRADE MOTION. II. APPLICATION TO KOIs. Astrophysical Journal, 2015, 807, 170.	1.6	38
101	A <i>HUBBLE SPACE TELESCOPE</i> SEARCH FOR A SUB-EARTH-SIZED EXOPLANET IN THE GJ 436 SYSTEM. Astrophysical Journal, 2014, 796, 32.	1.6	37
102	An Information Theoretic Framework for Classifying Exoplanetary System Architectures. Astronomical Journal, 2020, 159, 281.	1.9	37
103	Gemini planet imager observational calibrations V: astrometry and distortion. Proceedings of SPIE, 2014, , .	0.8	34
104	Radiative Thrusters on Close-in Extrasolar Planets. Astrophysical Journal, 2008, 677, L117-L120.	1.6	31
105	Outer Architecture of Kepler-11: Constraints from Coplanarity. Astronomical Journal, 2017, 153, 227.	1.9	30
106	THE BANANA PROJECT. IV. TWO ALIGNED STELLAR ROTATION AXES IN THE YOUNG ECCENTRIC BINARY SYSTEM EP CRUCIS: PRIMORDIAL ORIENTATION AND TIDAL ALIGNMENT. Astrophysical Journal, 2013, 767, 32.	1.6	29
107	HIGH-CONTRAST 3.8 μm IMAGING OF THE BROWN DWARF/PLANET-MASS COMPANION TO GJ 758. Astrophysical Journal Letters, 2010, 721, L177-L181.	3.0	23
108	K2-146: Discovery of Planet c, Precise Masses from Transit Timing, and Observed Precession. Astronomical Journal, 2019, 158, 133.	1.9	23

#	Article	IF	CITATIONS
109	Evidence for a Nondichotomous Solution to the Kepler Dichotomy: Mutual Inclinations of Kepler Planetary Systems from Transit Duration Variations. Astronomical Journal, 2021, 162, 166.	1.9	19
110	Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. , 2018, , 797-816.		18
111	Searching for Small Circumbinary Planets. I. The STANLEY Automated Algorithm and No New Planets in Existing Systems. Astronomical Journal, 2021, 162, 84.	1.9	16
112	Distinguishing Polar and Coplanar Circumbinary Exoplanets by Eclipse Timing Variations. Astrophysical Journal, 2019, 879, 92.	1.6	16
113	THE SHORT ROTATION PERIOD OF HI'IAKA, HAUMEA'S LARGEST SATELLITE. Astronomical Journal, 2016, 1 195.	.52 1.9	15
114	The Origin of Systems of Tightly Packed Inner Planets with Misaligned, Ultra-short-period Companions. Astronomical Journal, 2020, 160, 254.	1.9	14
115	Transits of Inclined Exomoons—Hide and Seek and an Application to Kepler-1625. Astrophysical Journal Letters, 2019, 875, L25.	3.0	13
116	Following Up the Kepler Field: Masses of Targets for Transit Timing and Atmospheric Characterization. Astronomical Journal, 2021, 161, 246.	1.9	13
117	Resonant Chains of Exoplanets: Libration Centers for Three-body Angles. Astronomical Journal, 2021, 161, 290.	1.9	11
118	The EBLM project – VII. Spin–orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1627-1633.	1.6	10
119	Sculpting the circumbinary planet size distribution through resonant interactions with companion planets. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5023-5036.	1.6	10
120	Stellar Flybys Interrupting Planet–Planet Scattering Generates Oort Planets. Astronomical Journal, 2019, 158, 94.	1.9	9
121	Observations of the Kepler Field with TESS: Predictions for Planet Yield and Observable Features. Astronomical Journal, 2019, 157, 235.	1.9	9
122	The Discovery of the Long-Period, Eccentric Planet Kepler-88 d and System Characterization with Radial Velocities and Photodynamical Analysis. Astronomical Journal, 2020, 159, 242.	1.9	9
123	Recent Kepler Results On Circumbinary Planets. Proceedings of the International Astronomical Union, 2012, 8, 125-132.	0.0	7
124	Systematic search for long-term transit duration changes in <i>Kepler</i> transiting planets. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1293-1310.	1.6	7
125	Nodal Precession in Closely Spaced Planet Pairs. Astronomical Journal, 2020, 159, 217.	1.9	6
126	Transit timings variations in the three-planet system: TOI-270. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5464-5485.	1.6	6

#	Article	IF	Citations
127	Multiple Transits during a Single Conjunction: Identifying Transiting Circumbinary Planetary Candidates from TESS. Astronomical Journal, 2020, 160, 174.	1.9	4
128	Period Ratio Sculpting near Second-order Mean-motion Resonances. Astronomical Journal, 2022, 163, 13.	1.9	3
129	What to Expect from Transiting Multiplanet Systems. Proceedings of the International Astronomical Union, 2008, 4, 173-179.	0.0	2
130	The Diversity of Low-mass Exoplanets Characterized via Transit Timing. Proceedings of the International Astronomical Union, 2015, 11, 40-50.	0.0	2
131	Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. , 2017, , 1-20.		2
132	Relative habitability of exoplanet systems with two giant planets. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4765-4780.	1.6	2
133	Spin-orbit angle in compact planetary systems perturbed by an inclined companion. Application to the 55 Cancri system. Proceedings of the International Astronomical Union, 2014, 9, 62-65.	0.0	1
134	Revisiting the eccentricities of hot Jupiters. Proceedings of the International Astronomical Union, 2010, 6, 243-247.	0.0	0
135	Tidal dynamics of transiting exoplanets. Proceedings of the International Astronomical Union, 2010, 6, 252-257.	0.0	O
136	Are there extrasolar moons?. Nature Astronomy, 2022, 6, 302-303.	4.2	0
137	Exciting Mutual Inclination in Planetary Systems with a Distant Stellar Companion: The Case of Kepler-108. Astronomical Journal, 2022, 163, 12.	1.9	O