
James E Pease

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8975916/publications.pdf Version: 2024-02-01

INMES F DEASE

#	Article	IF	CITATIONS
1	The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. Journal of Innate Immunity, 2022, 14, 69-88.	1.8	6
2	A highly efficient method for the production and purification of recombinant human CXCL8. PLoS ONE, 2021, 16, e0258270.	1.1	3
3	Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy. Journal of Clinical Medicine, 2020, 9, 3323.	1.0	131
4	Structure, dynamics and immunogenicity of a catalytically inactive CXC chemokine-degrading protease SpyCEP from Streptococcus pyogenes. Computational and Structural Biotechnology Journal, 2020, 18, 650-660.	1.9	19
5	A degradatory fate for CCR4 suggests a primary role in Th2 inflammation. Journal of Leukocyte Biology, 2020, 107, 455-466.	1.5	16
6	Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Science Immunology, 2019, 4, .	5.6	89
7	A Requirement for Neutrophil Glycosaminoglycans in Chemokine:Receptor Interactions Is Revealed by the Streptococcal Protease SpyCEP. Journal of Immunology, 2019, 202, 3246-3255.	0.4	14
8	Tipping the balance: AÂbiased nanobody antagonist of CCR3 with potential for the treatment of eosinophilic inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, 552-553.	1.5	10
9	Eosinophils on trial. Clinical and Experimental Allergy, 2018, 48, 490-492.	1.4	0
10	Chemokine Subversion by Human Herpesviruses. Journal of Innate Immunity, 2018, 10, 465-478.	1.8	25
11	Evidence for the Existence of a CXCL17 Receptor Distinct from GPR35. Journal of Immunology, 2018, 201, 714-724.	0.4	35
12	CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Scientific Reports, 2018, 8, 9466.	1.6	64
13	Eotaxins (CCL11, CCL24, CCL26). , 2018, , 1554-1558.		Ο
14	Designing small molecule CXCR3 antagonists. Expert Opinion on Drug Discovery, 2017, 12, 159-168.	2.5	21
15	Osteopontin binds and modulates functions of eosinophilâ€recruiting chemokines. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 58-67.	2.7	8
16	Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery?. Journal of Leukocyte Biology, 2016, 99, 901-909.	1.5	23
17	Eotaxins (CCL11, CCL24, CCL26). , 2016, , 1-5.		0
18	Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 161-170.	2.7	25

#	Article	IF	CITATIONS
19	IRF5 controls both acute and chronic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11001-11006.	3.3	125
20	Bisphenol A suppresses Th1-type immune response in human peripheral blood mononuclear cells in vitro. Immunology Letters, 2015, 168, 285-292.	1.1	31
21	CXCR 3 antagonist VUF 10085 binds to an intrahelical site distinct from that of the broad spectrum antagonist TAK â€779. British Journal of Pharmacology, 2015, 172, 1822-1833.	2.7	13
22	IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. Journal of Experimental Medicine, 2015, 212, 845-853.	4.2	194
23	Targeting chemokine receptors in disease – a case study of CCR4. European Journal of Pharmacology, 2015, 763, 169-177.	1.7	42
24	Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function. Immunity, 2015, 43, 945-958.	6.6	137
25	"Chemokine receptors as therapeutic targets: Why aren't there more drugs?― European Journal of Pharmacology, 2015, 746, 363-367.	1.7	71
26	Eotaxin-3 exerts innate host defense activities that are modulated by mast cell proteases. , 2015, , .		0
27	Chemokine Receptors in Allergy, Inflammation, and Infectious Disease. Topics in Medicinal Chemistry, 2014, , 1-39.	0.4	0
28	Recent progress in the development of antagonists to the chemokine receptors CCR3 and CCR4. Expert Opinion on Drug Discovery, 2014, 9, 467-483.	2.5	59
29	Distinct Conformations of the Chemokine Receptor CCR4 with Implications for Its Targeting in Allergy. Journal of Immunology, 2014, 192, 3419-3427.	0.4	36
30	Human Labour is Associated with a Decline in Myometrial Chemokine Receptor Expression: The Role of Prostaglandins, Oxytocin and Cytokines. American Journal of Reproductive Immunology, 2013, 69, 21-32.	1.2	7
31	CCL17/thymus and activation-regulated chemokine induces calcitonin gene–related peptide in human airway epithelial cells through CCR4. Journal of Allergy and Clinical Immunology, 2013, 132, 942-950.e3.	1.5	30
32	Editorial: Are all eotaxins created equal?. Journal of Leukocyte Biology, 2013, 94, 207-209.	1.5	6
33	Stretch and Inflammatory Cytokines Drive Myometrial Chemokine Expression Via NF-κB Activation. Endocrinology, 2012, 153, 481-491.	1.4	70
34	Small molecule chemokine mimetics suggest a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. British Journal of Pharmacology, 2012, 166, 912-923.	2.7	38
35	Chemokine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 9363-9392.	2.9	92
36	Molecular requirements for inhibition of the chemokine receptor CCR8 – probeâ€dependent allosteric interactions. British Journal of Pharmacology, 2012, 167, 1206-1217.	2.7	12

#	Article	IF	CITATIONS
37	Human TH2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. Journal of Allergy and Clinical Immunology, 2012, 129, 1136-1142.	1.5	45
38	CCR1 antagonism for the treatment of inflammatory diseases: Focus on CCX-354. Drugs of the Future, 2012, 37, 735.	0.0	3
39	Targeting chemokine receptors in allergic disease. Biochemical Journal, 2011, 434, 11-24.	1.7	63
40	A distinct subset of human NK cells expressing HLAâ€DR expand in response to ILâ€2 and can aid immune responses to BCG. European Journal of Immunology, 2011, 41, 1924-1933.	1.6	80
41	The CXCL16 A181V Mutation Selectively Inhibits Monocyte Adhesion to CXCR6 but Is Not Associated With Human Coronary Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 914-920.	1.1	18
42	Is there a role for CCR8 in the pathogenesis of asthma?. Clinical and Experimental Allergy, 2010, 40, 1110-1112.	1.4	5
43	The Role of the CCL2/CCR2 Axis in Mouse Mast Cell Migration In Vitro and In Vivo. Journal of Immunology, 2010, 184, 6114-6123.	0.4	95
44	Small Molecule Antagonists of Chemokine Receptors - is Promiscuity a Virtue?. Current Topics in Medicinal Chemistry, 2010, 10, 1351-1358.	1.0	20
45	A single nucleotide polymorphism in the CCR3 gene ablates receptor export to the plasma membrane. Journal of Allergy and Clinical Immunology, 2010, 126, 150-157.e2.	1.5	9
46	Chemokine receptor antagonists: part 2. Expert Opinion on Therapeutic Patents, 2009, 19, 199-221.	2.4	91
47	Chemokine receptor antagonists: Part 1. Expert Opinion on Therapeutic Patents, 2009, 19, 39-58.	2.4	105
48	Elucidation of Binding Sites of Dual Antagonists in the Human Chemokine Receptors CCR2 and CCR5. Molecular Pharmacology, 2009, 75, 1325-1336.	1.0	52
49	Chemokines. , 2009, , 313-325.		2
50	Chapter 13 Modeling Small Molecule–Compound Binding to Gâ€Protein–Coupled Receptors. Methods in Enzymology, 2009, 460, 263-288.	0.4	22
51	Siteâ€directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16. European Journal of Immunology, 2008, 38, 2337-2350.	1.6	27
52	Chemokine and Cytokine Mediated Loss of Regulatory T Cells in Lymph Nodes during Pathogenic Simian Immunodeficiency Virus Infection. Journal of Immunology, 2008, 180, 5530-5536.	0.4	38
53	Re-evaluation of Chicken CXCR1 Determines the True Gene Structure. Journal of Biological Chemistry, 2008, 283, 16408-16415.	1.6	56
54	CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. Journal of Leukocyte Biology, 2008, 83, 875-882.	1.5	87

#	Article	IF	CITATIONS
55	Structure and Function of A41, a Vaccinia Virus Chemokine Binding Protein. PLoS Pathogens, 2008, 4, e5.	2.1	66
56	The Chemokine Receptor CXCR3 Is Degraded following Internalization and Is Replenished at the Cell Surface by De Novo Synthesis of Receptor. Journal of Immunology, 2008, 180, 6713-6724.	0.4	120
57	Noncompetitive Antagonism and Inverse Agonism as Mechanism of Action of Nonpeptidergic Antagonists at Primate and Rodent CXCR3 Chemokine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 544-555.	1.3	57
58	Small Molecule Receptor Agonists and Antagonists of CCR3 Provide Insight into Mechanisms of Chemokine Receptor Activation. Journal of Biological Chemistry, 2007, 282, 27935-27943.	1.6	51
59	The CXC Chemokine MIG/CXCL9 Is Important in Innate Immunity againstStreptococcus pyogenes. Journal of Infectious Diseases, 2007, 195, 684-693.	1.9	94
60	Contrary prostaglandins: the opposing roles of PGD2 and its metabolites in leukocyte function. Journal of Leukocyte Biology, 2007, 81, 372-382.	1.5	49
61	Unravelling the mechanisms underpinning chemokine receptor activation and blockade by small molecules: a fine line between agonism and antagonism?. Biochemical Society Transactions, 2007, 35, 755-759.	1.6	5
62	Microbial Exploitation and Subversion of the Human Chemokine Network. Methods in Pharmacology and Toxicology, 2007, , 47-65.	0.1	0
63	CCR4 Chemokine Receptor. , 2007, , 1-8.		1
64	Chemokines and their receptors in allergic disease. Journal of Allergy and Clinical Immunology, 2006, 118, 305-318.	1.5	101
65	9α,11β-PGF2and its stereoisomer PGF2αare novel agonists of the chemoattractant receptor, CRTH2. FEBS Letters, 2006, 580, 373-379.	1.3	41
66	Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Molecular Immunology, 2006, 43, 1221-1231.	1.0	27
67	Asthma, Allergy and Chemokines. Current Drug Targets, 2006, 7, 3-12.	1.0	83
68	The attraction of chemokines as a target for specific anti-inflammatory therapy. British Journal of Pharmacology, 2006, 147, S212-S221.	2.7	64
69	Tails of the unexpected - an atypical receptor for the chemokine RANTES/CCL5 expressed in brain. British Journal of Pharmacology, 2006, 149, 460-462.	2.7	15
70	Predictions of CCR1 Chemokine Receptor Structure and BX 471 Antagonist Binding Followed by Experimental Validation. Journal of Biological Chemistry, 2006, 281, 27613-27620.	1.6	88
71	Structure/Function Relationships of CCR8 Agonists and Antagonists. Journal of Biological Chemistry, 2006, 281, 36652-36661.	1.6	30
72	Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. Journal of General Virology, 2006, 87, 809-816.	1.3	8

#	Article	IF	CITATIONS
73	The Molecular and Cellular Biology of CC Chemokines and Their Receptors. Current Topics in Membranes, 2005, , 73-102.	0.5	2
74	The carboxyl terminus of the chemokine receptor CCR3 contains distinct domains which regulate chemotactic signaling and receptor down-regulation in a ligand-dependent manner. European Journal of Immunology, 2005, 35, 1301-1310.	1.6	17
75	Site-directed Mutagenesis of CC Chemokine Receptor 1 Reveals the Mechanism of Action of UCB 35625, a Small Molecule Chemokine Receptor Antagonist. Journal of Biological Chemistry, 2005, 280, 4808-4816.	1.6	64
76	CCR1 antagonists in clinical development. Expert Opinion on Investigational Drugs, 2005, 14, 785-796.	1.9	40
77	11-Dehydro-thromboxane B2, a Stable Thromboxane Metabolite, Is a Full Agonist of Chemoattractant Receptor-homologous Molecule Expressed on TH2 Cells (CRTH2) in Human Eosinophils and Basophils. Journal of Biological Chemistry, 2004, 279, 7663-7670.	1.6	93
78	The use of membrane translocating peptides to identify sites of interaction between the C5a receptor and downstream effector proteins. Immunology, 2004, 112, 590-596.	2.0	6
79	Proteoglycans are potent modulators of the biological responses of eosinophils to chemokines. European Journal of Immunology, 2003, 33, 1302-1310.	1.6	41
80	CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. European Journal of Immunology, 2003, 33, 2241-2250.	1.6	103
81	Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. European Journal of Immunology, 2003, 33, 2927-2936.	1.6	82
82	Yaba-like disease virus protein 7L is a cell-surface receptor for chemokine CCL1. Journal of General Virology, 2003, 84, 3325-3336.	1.3	18
83	CCR4 blockade does not inhibit allergic airways inflammation. Journal of Leukocyte Biology, 2003, 74, 558-563.	1.5	54
84	Variations in Eosinophil Chemokine Responses: An Investigation of CCR1 and CCR3 Function, Expression in Atopy, and Identification of a Functional CCR1 Promoter. Journal of Immunology, 2003, 170, 6190-6201.	0.4	44
85	The Identification, Characterization, and Distribution of Guinea Pig CCR4 and Epitope Mapping of a Blocking Antibody. Journal of Biological Chemistry, 2002, 277, 6864-6873.	1.6	16
86	Chemokines, innate and adaptive immunity, and respiratory disease: Table 1—. European Respiratory Journal, 2002, 19, 350-355.	3.1	56
87	The Role of Interleukin-8 and its Receptors in Inflammatory Lung Disease. Treatments in Respiratory Medicine, 2002, 1, 19-25.	1.4	173
88	Alanine scanning mutagenesis of CCR3 reveals that the three intracellular loops are essential for functional receptor expression. European Journal of Immunology, 2002, 32, 1052-1058.	1.6	42
89	CCR4 in human allergen-induced late responses in the skin and lung. European Journal of Immunology, 2002, 32, 1933.	1.6	60

#	Article	IF	CITATIONS
91	Eotaxin and asthma. Current Opinion in Pharmacology, 2001, 1, 248-253.	1.7	94
92	GLAXO/MRS PAPERRoles of chemokines in the regulation of leucocyte recruitmentThis paper was presented at the Glaxo/MRS Young Investigator session at the MRS Meeting, Royal College of Physicians, London, on 22 May 2000 Clinical Science, 2001, 100, 359.	1.8	2
93	The CC Chemokine Eotaxin (CCL11) Is a Partial Agonist of CC Chemokine Receptor 2b. Journal of Biological Chemistry, 2001, 276, 42957-42964.	1.6	67
94	Asthma and MIF: innately Th1 and Th2. Clinical and Experimental Allergy, 2000, 30, 1194-1196.	1.4	9
95	A Small Molecule Antagonist of Chemokine Receptors CCR1 and CCR3. Journal of Biological Chemistry, 2000, 275, 25985-25992.	1.6	199
96	Delta 32 deletion of CCR5 gene and association with asthma or atopy. Lancet, The, 2000, 356, 1491-1492.	6.3	50
97	Receptor Activation by Human C5a des Arg74but Not Intact C5a Is Dependent on an Interaction between Glu199of the Receptor and Lys68of the Ligandâ€. Biochemistry, 1999, 38, 9712-9717.	1.2	18
98	Microbial corruption of the chemokine system: An expanding paradigm. Seminars in Immunology, 1998, 10, 169-178.	2.7	47
99	The N-terminal Extracellular Segments of the Chemokine Receptors CCR1 and CCR3 Are Determinants for MIP-1α and Eotaxin Binding, Respectively, but a Second Domain Is Essential for Efficient Receptor Activation. Journal of Biological Chemistry, 1998, 273, 19972-19976.	1.6	102
100	Determinants of HIV-1 Coreceptor Function on CC Chemokine Receptor 3. Journal of Biological Chemistry, 1997, 272, 20420-20426.	1.6	73
101	Identification of CCR8: A Human Monocyte and Thymus Receptor for the CC Chemokine I-309. Journal of Experimental Medicine, 1997, 186, 165-170.	4.2	213
102	Mutation of Glutamate 199 of the Human C5a Receptor Defines a Binding Site for Ligand Distinct from the Receptor N Terminus. Journal of Biological Chemistry, 1995, 270, 16625-16629.	1.6	32
103	Generation of chimeric C5a/formyl peptide receptors: towards the identification of the human C5a receptor binding site. European Journal of Immunology, 1994, 24, 211-215.	1.6	22
104	Mutation of aspartate 82 of the human C5a receptor abolishes the secretory response to human C5a in transfected rat basophilic leukemia cells. European Journal of Immunology, 1994, 24, 2922-2925.	1.6	18
105	Site directed mutagenesis of the complement C5a receptor—Examination of a model for its interaction with the ligand C5a. Molecular Immunology, 1994, 31, 733-737.	1.0	7