Jin-Dou Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8975361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonic Active "Hot Spotsâ€â€€onfined Photocatalytic CO ₂ Reduction with High Selectivity for CH ₄ Production. Advanced Materials, 2022, 34, e2109330.	11.1	108
2	Plasmonic Active "Hot Spotsâ€â€€onfined Photocatalytic CO ₂ Reduction with High Selectivity for CH ₄ Production (Adv. Mater. 14/2022). Advanced Materials, 2022, 34, .	11.1	5
3	One-step hydrothermal synthesis of S-defect-controlled ZnIn2S4 microflowers with improved kinetics process of charge-carriers for photocatalytic H2 evolution. Journal of Energy Chemistry, 2021, 58, 397-407.	7.1	100
4	Fluorescence enhancement mechanism of thymolphthalein-based probe by coordination interaction with zinc ion. Journal of Molecular Liquids, 2021, 339, 116275.	2.3	3
5	Simultaneous Evaluation of Reaction and Diffusion over Molecular Sieves for Shape-Selective Catalysis. ACS Catalysis, 2020, 10, 8727-8735.	5.5	32
6	Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nature Communications, 2020, 11, 1079.	5.8	70
7	An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 24180-24185.	5.2	90
8	Methanol to Olefins Reaction Route Based on Methylcyclopentadienes as Critical Intermediates. ACS Catalysis, 2019, 9, 7373-7379.	5.5	58
9	First molecule with carbon–carbon bond in methanol-to-olefins process. Chemical Physics Letters, 2019, 737, 136844.	1.2	11
10	Computational understanding of the structural and electronic properties of the GeS–graphene contact. Physical Chemistry Chemical Physics, 2019, 21, 7447-7453.	1.3	62
11	Chabazite Architecture Dominates the Structure of SAPO-34's Surface Methoxy Species. Catalysis Letters, 2019, 149, 2104-2109.	1.4	4
12	Theoretical study of charge-transport and optical properties of organic crystals: 4,5,9,10-pyrenediimides. IUCrJ, 2019, 6, 603-609.	1.0	6
13	IRâ€Đriven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H ₂ Generation. Advanced Materials, 2018, 30, 1705221.	11.1	119
14	Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catalysis, 2018, 8, 10950-10963.	5.5	59
15	Evolution of C–C Bond Formation in the Methanol-to-Olefins Process: From Direct Coupling to Autocatalysis. ACS Catalysis, 2018, 8, 7356-7361.	5.5	54
16	The mechanism of the excited-state multiple proton transfer reaction for 3-Me-2,6-diazaindole in aqueous solution. Organic Chemistry Frontiers, 2018, 5, 2749-2753.	2.3	13
17	Low-cost dual cocatalysts BiVO ₄ for highly efficient visible photocatalytic oxidation. RSC Advances, 2017, 7, 15053-15059.	1.7	29
18	A Nonmetal Plasmonic Zâ€Scheme Photocatalyst with UV―to NIRâ€Driven Photocatalytic Protons Reduction. Advanced Materials, 2017, 29, 1606688.	11.1	345

JIN-DOU HUANG

#	Article	IF	CITATIONS
19	A DFT Study on the Electronic Structures and Conducting Properties of Rubrene and its Derivatives in Organic Field-Effect Transistors. Scientific Reports, 2017, 7, 331.	1.6	39
20	Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie - International Edition, 2017, 56, 9039-9043.	7.2	128
21	Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie, 2017, 129, 9167-9171.	1.6	29
22	Density functional theoretical investigation of intramolecular proton transfer mechanisms in the derivatives of 3-hydroxychromone. Organic Chemistry Frontiers, 2017, 4, 1812-1818.	2.3	35
23	First-principles calculation of the structure and electronic properties of Fe-substituted Bi ₂ Ti ₂ O ₇ . Semiconductor Science and Technology, 2017, 32, 125007.	1.0	7
24	Innenrücktitelbild: Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process (Angew. Chem. 31/2017). Angewandte Chemie, 2017, 129, 9369-9369.	1.6	0
25	Charge-transport properties of 4-(1,2,2-triphenylvinyl)aniline salicylaldehyde hydrazone: tight-packing induced molecular `hardening'. IUCrJ, 2017, 4, 695-699.	1.0	7
26	Straightforward Stepwise Excited State Dual Proton Transfer Mechanism for 9-10-HBQ System. Communications in Computational Chemistry, 2017, 5, 27-36.	1.0	49
27	Ab initio study of the excited-state proton transfer mechanisms for 3-hydroxy-2-(thiophen-2-yl)chromen-4-one. RSC Advances, 2016, 6, 96147-96153.	1.7	46
28	The charge mobilities in fused ring Oligothiophenes and their derivatives: influence of molecular structures. Journal of Molecular Modeling, 2016, 22, 182.	0.8	1
29	Electronic structure and microscopic chargeâ€transport properties of a newâ€type diketopyrrolopyrroleâ€based material. Journal of Computational Chemistry, 2015, 36, 695-706.	1.5	14
30	Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation. Nature Protocols, 2015, 10, 632-642.	5.5	187
31	Firstâ€Principles Investigation of Anisotropic Electron and Hole Mobility in Heterocyclic Oligomer Crystals. ChemPhysChem, 2013, 14, 2579-2588.	1.0	7
32	Band gap narrowing of TiO2 by compensated codoping for enhanced photocatalytic activity. Journal of Natural Gas Chemistry, 2012, 21, 302-307.	1.8	31
33	Firstâ€Principles Investigation of the Electronic and Conducting Properties of Oligothienoacenes and their Derivatives. Chemistry - an Asian Journal, 2012, 7, 1032-1040.	1.7	31
34	Simulation of Hole Mobility in α-Oligofuran Crystals. Journal of Physical Chemistry B, 2011, 115, 2140-2147.	1.2	92