Parfenyuk Vladimir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8975170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Potential at the Gas–Aqueous Solution Interface. Colloid Journal, 2002, 64, 588-595.	1.3	42
2	Solvent and electrode influence on electrochemical forming of poly-Fe(III)-aminophenylporphyrin films. Journal of Porphyrins and Phthalocyanines, 2017, 21, 555-567.	0.8	27
3	Anode plasma electrolytic carburizing of commercial pure titanium. Surface and Coatings Technology, 2016, 307, 1303-1309.	4.8	24
4	Poly-porphyrin electrocatalytic films obtained via new superoxide-assisted electrochemical deposition method. Electrochemistry Communications, 2017, 83, 28-32.	4.7	24
5	Superoxide-assisted electrochemical deposition of Mn-aminophenyl porphyrins: Process characteristics and properties of the films. Electrochimica Acta, 2018, 292, 256-267.	5.2	23
6	Electroconductive films based on amino-substituted tetraphenylporphyrins and their metal copper complexes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 793-803.	0.8	22
7	The coulometric approach to the superoxide scavenging activity determination: The case of porphyrin derivatives influence on oxygen electroreduction. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1053-1062.	0.8	21
8	Electrochemically synthesized superoxide radical anion as an activator of electrodeposition of polyporphyrin films. Mendeleev Communications, 2017, 27, 470-472.	1.6	21
9	Structures and properties of porphyrin-based film materials part I. The films obtained via vapor-assisted methods. Advances in Colloid and Interface Science, 2018, 253, 23-34.	14.7	21
10	Ab initio calculations of structure and stability of small boron nitride clusters. Journal of Structural Chemistry, 2006, 47, 1016-1021.	1.0	20
11	Substituent position influence on the electrochemical properties and antioxidant activity of tetra(aminophenyl)porphyrins. Journal of Porphyrins and Phthalocyanines, 2014, 18, 585-593.	0.8	20
12	Plasma electrolytic nitriding of alpha- and beta-titanium alloy in ammonia-based electrolyte. Surface and Coatings Technology, 2016, 307, 1291-1296.	4.8	19
13	Anode Plasma Electrolytic Saturation of Titanium Alloys with Nitrogen and Oxygen. Journal of Materials Science and Technology, 2016, 32, 1027-1032.	10.7	17
14	Effect of substituent structure on formation and properties of poly-hydroxyphenyl porphyrin films obtained by superoxide-assisted method. Electrochimica Acta, 2020, 342, 136064.	5.2	17
15	Kinetic parameters of the electroreduction of oxygen on a graphitized carbon electrode activated by tetrakis(4-methoxyphenyl)porphyrin and its cobalt complexes. Russian Journal of Physical Chemistry A, 2012, 86, 9-13.	0.6	15
16	Mechanism and superoxide scavenging activity of hydroxy substituted tetraphenylporphyrins via coulometric approach. Journal of Electroanalytical Chemistry, 2016, 772, 80-88.	3.8	14
17	Superoxide-assisted electrochemical deposition of semiconductor polyhydroxyphenylporphyrin films. Mendeleev Communications, 2019, 29, 309-311.	1.6	14
18	Physicochemical properties of an electroconductive film based on tetrakis(p-aminophenyl)porphine. Russian Journal of Physical Chemistry A, 2014, 88, 325-330.	0.6	13

#	Article	IF	CITATIONS
19	Effect of anodic potential on process of formation of polyporphyrin film in solutions of tetrakis(p-aminophenyl)porphin in dichloromethane. Russian Journal of Electrochemistry, 2014, 50, 429-437.	0.9	13
20	Electrochemical properties of derivatives of tetraphenylporphyrin in dichloromethane. Russian Journal of Electrochemistry, 2014, 50, 517-522.	0.9	13
21	Electrodeposition of catalytically active polyporphyrin films of metal complexes of amino-substituted tetraphenylporphyrins. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1047-1053.	0.8	13
22	Substituted Tetraphenylporphyrins as Promising Molecular Systems with High Antioxidant Activity. Macroheterocycles, 2014, 7, 218-224.	0.5	12
23	Highly conductive polyporphyrin films obtained by superoxide-assisted electropolymerization of para – aminophenyl porphyrin. Materials Chemistry and Physics, 2020, 241, 122394.	4.0	11
24	Electrochemical Properties and Electropolymerization of Tetrakis(para-aminophenyl)porphyrin in Dichloromethane. Macroheterocycles, 2013, 6, 152-157.	0.5	11
25	The Electrochemical Evaluation of the Antioxidant Activity of Substituted Tetraphenylporphyrins. Russian Journal of Electrochemistry, 2017, 53, 1281-1285.	0.9	10
26	Electropolymerization of poly-5,10,15,20-tetrakis(<i>p</i> -aminophenyl)porphyrin in different deposition modes and solvents. Journal of Porphyrins and Phthalocyanines, 2018, 22, 632-639.	0.8	9
27	Influence of Тetrakis(4'-decaoxyphenyl)porphyrin Addition on Electrochemical Reduction of Oxygen on Ðt Electrode in Dimethylformamide. Macroheterocycles, 2012, 5, 131-135.	0.5	9
28	Electrochemical determination of antioxidant properties of a series of tetraphenylporphyrin derivatives and their zinc complexes. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1032-1038.	0.8	8
29	Surface Potential at the Gas–Nonaqueous Solution Interface. Colloid Journal, 2004, 66, 466-469.	1.3	7
30	Effect of the anode material on the composition and dimensional characteristics of the nano-sized copper-bearing powders produced by the electrochemical method. Surface Engineering and Applied Electrochemistry, 2010, 46, 400-405.	0.8	7
31	Thermodynamic characteristics of the resolvation of K+ and Cl– ions in mixtures of water with aprotic solvents. Mendeleev Communications, 2005, 15, 212-213.	1.6	6
32	The effect of diffusion processes on surface smoothing upon chemical polishing of titanium. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 947-953.	1.1	6
33	Formation of poly-Phenylporphyrin Film Activated by Superoxide Anion Radical. Macroheterocycles, 2015, 8, 259-265.	0.5	6
34	2H-5,10,15,20-tetrakis(3-aminophenyl)porphyrin films: Electrochemical formation and catalyst property testing. Journal of Electroanalytical Chemistry, 2022, 918, 116476.	3.8	6
35	Scan rate effect on superoxide-assisted electrochemical deposition of 2H-5,10,15,20-tetrakis(3-aminophenyl)porphyrin films. Electrochimica Acta, 2022, 425, 140742.	5.2	6
36	Thermodynamics of Na+ ion solvation in water–organic mixtures studied by the method of Volta potential differences. Mendeleev Communications, 2003, 13, 239-240.	1.6	5

Parfenyuk Vladimir

#	Article	IF	CITATIONS
37	Effect of isopropyl alcohol on cathodic deposition of ultradispersed copper-containing powders from electrolyte solutions. Russian Journal of Applied Chemistry, 2007, 80, 930-933.	0.5	5
38	Electrochemical preparation and properties of ultradisperce silver powder. Russian Journal of Applied Chemistry, 2009, 82, 1396-1400.	0.5	5
39	Plasma electrolytic treatment of VT22 titanium alloy in electrolytes with carbon-containing compounds. Surface Engineering and Applied Electrochemistry, 2017, 53, 1-6.	0.8	5
40	Anodic plasma electrolytic nitrocarburising of Ti6Al4 V alloy (SMT31). Surface Engineering, 2019, 35, 199-204.	2.2	5
41	Estimation of Antioxidant Activity of Tetrakis(p–aminophenyl)- porphine regard to Superoxide Ions by Voltammetry Method. Macroheterocycles, 2013, 6, 334-339.	0.5	5
42	Electrochemical properties and antioxidant activity of tetraphenylporphyrin derivatives. Russian Journal of Electrochemistry, 2015, 51, 686-692.	0.9	4
43	An electrochemical quartz crystal microbalance study of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin electropolymerization process. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1495-1504.	0.8	4
44	Morphology/potential-dependent electrochromic behaviour of poly(Hydroxyphenyl porphyrin) films. Materials Chemistry and Physics, 2022, 275, 125214.	4.0	4
45	Thin films of Zn-Tetrakis(4-Hydroxyphenyl) Porphyrin: Formation, morphology and electrochemical properties. Thin Solid Films, 2022, 752, 139245.	1.8	4
46	Title is missing!. Journal of Structural Chemistry, 2001, 42, 951-955.	1.0	3
47	Application of Volta chains to determine ionic components of real and chemical Gibbs energies of transfer of individual ions from water to aqueous-organic solvents. Russian Chemical Bulletin, 2007, 56, 1-6.	1.5	3
48	Influence of ultra dispersed (Nanosized) cupper contained powders on the tribological behavior of commercial lubricants. Surface Engineering and Applied Electrochemistry, 2008, 44, 471-476.	0.8	3
49	Electrocrystallization and physicochemical properties of nanosized copper-containing powders. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 300-304.	1.1	3
50	Hydroxyalkyloxy substituted tetraphenylporphyrins: Mechanism and superoxide scavenging activity. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1477-1485.	0.8	3
51	Poly-5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin as a material for photovoltaic devices. Mendeleev Communications, 2020, 30, 777-780.	1.6	3
52	Electrochemical doping and semiconductor properties of poly-5,10,15,20-tetrakis(p-aminophenyl)porphyrin films. Journal of Porphyrins and Phthalocyanines, 2021, 25, 254-261.	0.8	3
53	Electrodeposition of films of individual 5,10,15,20-tetrakis(3-aminophenyl)porphyrin metal complexes and their composite for electrocatalytic oxygen reduction. Inorganic Chemistry Communication, 2022, 135, 109106.	3.9	3
54	Electrochemical production of ultradisperse copper-containing particles from organo-aqueous electrolyte solutions. Protection of Metals, 2006, 42, 394-397.	0.2	2

Parfenyuk Vladimir

#	Article	IF	CITATIONS
55	Physicochemical properties of ultrafine copper-containing powders synthesized by cathode reduction. Russian Journal of Physical Chemistry A, 2006, 80, 264-267.	0.6	2
56	Electrochemical determination of standard thermodynamic parameters characterizing resolvation of Cu2+ cations in water-acetone mixtures. Russian Journal of Electrochemistry, 2006, 42, 959-963.	0.9	2
57	Thermodynamic properties of individual ions, calculated in terms of conception of real thermodynamic properties of individual ions in solutions. Russian Journal of Electrochemistry, 2006, 42, 1067-1072.	0.9	2
58	lonic components of the real and chemical Gibbs energy of transport of potassium and chloride ions from water to water-methanol mixtures. Russian Journal of Electrochemistry, 2008, 44, 1162-1165.	0.9	2
59	Increase in Corrosion Resistance of Commercial Pure Titanium by Anode Plasma Electrolytic Nitriding. Materials Science Forum, 2016, 844, 125-132.	0.3	2
60	Synthesis, Electrochemical Properties and Antioxidant Activity of Hydroxy Substituted Tetraphenylporphyrins. Macroheterocycles, 2017, 10, 43-50.	0.5	2
61	Title is missing!. Russian Journal of Electrochemistry, 2002, 38, 431-434.	0.9	1
62	The gibbs energies of transfer of calcium ions from water into water-acetone mixtures. Russian Journal of Physical Chemistry A, 2006, 80, 562-565.	0.6	1
63	The standard thermodynamic characteristics of resolvation of the K+, Ca2+, Cd2+, and Brâ^' ions in water-acetone mixtures. Russian Journal of Physical Chemistry A, 2007, 81, 735-738.	0.6	1
64	Electrochemical synthesis of ultradispersed copper-containing powders obtained from solutions of copper nitrates in aqueous propan-2-ol. Protection of Metals, 2008, 44, 253-256.	0.2	1
65	The special features of the solvation of the sodium, potassium, and bromine ions in water-methanol mixtures. Russian Journal of Physical Chemistry A, 2008, 82, 978-981.	0.6	1
66	Influence of the electrolytic solution composition on the process of electrochemical synthesis of nanodimensional cupriferous powders. Surface Engineering and Applied Electrochemistry, 2008, 44, 50-54.	0.8	1
67	The thermodynamic characteristics of resolvation of calcium and cadmium ions in aqueous-ethanolic mixtures. Russian Journal of Physical Chemistry A, 2009, 83, 1102-1105.	0.6	1
68	Thermodynamics of resolvation of Mg2+, Ca2+, Cd2+, and Cu2+ ions in aqueous-ethanol mixtures on the basis of volta potential difference method. Russian Journal of Electrochemistry, 2010, 46, 993-998.	0.9	1
69	The features of mass transfer in the electroreduction of copper from aqueous ethanol solutions of copper sulfate. Surface Engineering and Applied Electrochemistry, 2010, 46, 589-595.	0.8	1
70	Electrochemical processes on the copper electrode in water-ethanol solutions of copper sulfate. Russian Journal of General Chemistry, 2011, 81, 463-469.	0.8	1
71	Role of mass transfer in electrochemical crystallization of copper from water-isopropyl alcohol solutions of copper sulfate. Russian Journal of Applied Chemistry, 2011, 84, 615-619.	0.5	1
72	Synthesis of copper-bearing powders and obtaining composite metallopolymeric materials. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47, 215-219.	1.1	1

#	Article	IF	CITATIONS
73	Resolvation thermodynamics of individual ions in water-ethanol mixtures at 298.15 K. Russian Journal of Physical Chemistry A, 2011, 85, 1307-1311.	0.6	1
74	Title is missing!. Journal of Structural Chemistry, 2001, 42, 946-950.	1.0	0
75	Thermodynamic Characteristics of Resolvation of Bromide Ions in Water–Dimethyl Sulfoxide Mixtures. Russian Journal of Electrochemistry, 2002, 38, 326-328.	0.9	0
76	Thermodynamics of Resolvation of Sodium and Potassium Ions in Water–Dimethylformamide. Russian Journal of Electrochemistry, 2004, 40, 470-473.	0.9	0
77	Thermodynamics of Re-Solvation of Cadmium Ions in Water-Acetone Solvents. Russian Journal of Electrochemistry, 2005, 41, 1077-1081.	0.9	0
78	Simulation of ion mass transfer processes with allowance for the concentration dependence of diffusion coefficients. Russian Chemical Bulletin, 2006, 55, 661-665.	1.5	0
79	Effect of isopropyl alcohol on the granulometric and chemical composition of ultradispersed copper-containing powders. Russian Journal of Applied Chemistry, 2008, 81, 1909-1913.	0.5	0
80	Thermodynamics of copper ion resolvation in water-isopropanol mixtures by the method of volta potential differences. Russian Journal of Electrochemistry, 2008, 44, 870-872.	0.9	0
81	Effect of hydrodynamic conditions on the silver electrodeposition from water-ethanol solutions of electrolytes. Russian Journal of General Chemistry, 2009, 79, 345-349.	0.8	0
82	Parameters of electrical double layer on the boundary copper electrode/water-organic solution of copper sulfate. Russian Journal of General Chemistry, 2009, 79, 2287-2292.	0.8	0
83	Electrochemical study of potassium and iodide ions resolvation in aqueous methanol mixtures. Russian Journal of Electrochemistry, 2009, 45, 1202-1205.	0.9	0
84	Catalytic activity of electrodeposited copper-containing compounds in conversion of carbon monoxide by steam. Russian Journal of Applied Chemistry, 2011, 84, 1860-1865.	0.5	0
85	Electrochemical determination of the standard thermodynamic characteristics of copper(II) ion resolvation in water-methanol mixtures. Russian Journal of Electrochemistry, 2011, 47, 861-864.	0.9	0
86	Effect of the structure of the electrode solution interface on the electrocrystallization of high-dispersity copper compounds. Russian Journal of Applied Chemistry, 2012, 85, 1851-1855.	0.5	0
87	The effect of hydrodynamic conditions on the rate of copper cathodic reduction from aqueous ethanol environments. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 520-523.	1.1	0
88	Adjustment of electrolyte for chemical polishing of titanium. Russian Journal of Applied Chemistry, 2012, 85, 770-775.	0.5	0
89	Electrochemical synthesis of mesoporous aluminum oxide with preliminary surface structuring. Russian Journal of Electrochemistry, 2014, 50, 1095-1098.	0.9	0
90	Hydroxy- and Aminophenylporphyrin Polymers as Metal-Free Catalysts for Oxygen Reduction. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
91	SURFACE PROPERTIES OF TITANIUM ALLOY VT 6 AFTER PLASMA ELECTROLYTIC TREATMENT. ChemChemTech, 2018, 61, 58.	0.3	0
92	Modification of the surface of electrodes by polyporphyrin films for electrocatalytic reduction of oxygen. Galʹvanotehnika I Obrabotka Poverhnosti, 2019, 27, 19-27.	0.0	0