Laurent Debarbieux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/897510/publications.pdf

Version: 2024-02-01

54 papers 4,170 citations

32 h-index 61 g-index

72 all docs $\begin{array}{c} 72 \\ \text{docs citations} \end{array}$

72 times ranked

3877 citing authors

#	Article	IF	CITATIONS
1	Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen. Cell Host and Microbe, 2017, 22, 38-47.e4.	11.0	315
2	Bacteriophages Can Treat and Prevent <i>Pseudomonas aeruginosa</i> Lung Infections. Journal of Infectious Diseases, 2010, 201, 1096-1104.	4.0	265
3	The Phage Therapy Paradigm: Prêt-Ã-Porter or Sur-mesure?. Pharmaceutical Research, 2011, 28, 934-937.	3.5	249
4	Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention. PLoS ONE, 2011, 6, e16963.	2.5	220
5	Cross-reactivity between tumor MHC class l–restricted antigens and an enterococcal bacteriophage. Science, 2020, 369, 936-942.	12.6	217
6	Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits. PLoS Genetics, 2013, 9, e1003539.	3.5	191
7	Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharmaceutical Research, 2015, 32, 2173-2179.	3 . 5	176
8	Design of a Broad-Range Bacteriophage Cocktail That Reduces Pseudomonas aeruginosa Biofilms and Treats Acute Infections in Two Animal Models. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	166
9	The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. Cell Host and Microbe, 2017, 22, 801-808.e3.	11.0	133
10	Predicting <i>In Vivo</i> Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections. Antimicrobial Agents and Chemotherapy, 2013, 57, 5961-5968.	3.2	125
11	The Spatial Heterogeneity of the Gut Limits Predation and Fosters Coexistence of Bacteria and Bacteriophages. Cell Host and Microbe, 2020, 28, 390-401.e5.	11.0	122
12	Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environmental Microbiology, 2016, 18, 2237-2245.	3.8	121
13	Bacteriophages targeting adherent invasive <i>Escherichia coli</i> strains as a promising new treatment for Crohn's disease. Journal of Crohn's and Colitis, 2017, 11, jjw224.	1.3	102
14	The Battle Within: Interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host and Microbe, 2019, 25, 210-218.	11.0	101
15	Next-Generation "-omics―Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa. PLoS Genetics, 2016, 12, e1006134.	3.5	94
16	Phage therapy: awakening a sleeping giant. Emerging Topics in Life Sciences, 2017, 1, 93-103.	2.6	90
17	Electron Avenue. Cell, 1999, 99, 117-119.	28.9	88
18	Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine. Antimicrobial Agents and Chemotherapy, 2012, 56, 6235-6242.	3.2	87

#	Article	IF	Citations
19	Intestinal colonization by enteroaggregative <i>Escherichia coli</i> supports longâ€term bacteriophage replication in mice. Environmental Microbiology, 2012, 14, 1844-1854.	3.8	84
20	The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by \hat{l}^2 -Lactams. Clinical Infectious Diseases, 2017, 64, 1582-1588.	5.8	76
21	Bacteriophages as twenty-first century antibacterial tools for food and medicine. Applied Microbiology and Biotechnology, 2011, 90, 851-859.	3.6	75
22	A bacteriophage journey at the European Medicines Agency. FEMS Microbiology Letters, 2016, 363, fnv225.	1.8	67
23	"l will survive― A tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes, 2019, 10, 92-99.	9.8	65
24	Phage Therapy of Pneumonia Is Not Associated with an Overstimulation of the Inflammatory Response Compared to Antibiotic Treatment in Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	62
25	Tools from viruses: Bacteriophage successes and beyond. Virology, 2012, 434, 151-161.	2.4	61
26	Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 <i>Escherichia coli</i> li>clonal complex. Journal of Antimicrobial Chemotherapy, 2016, 71, 3072-3080.	3.0	53
27	On the Functional Interchangeability, Oxidant versus Reductant, of Members of the Thioredoxin Superfamily. Journal of Bacteriology, 2000, 182, 723-727.	2.2	52
28	Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia With Bacteriophages*. Critical Care Medicine, 2015, 43, e190-e198.	0.9	48
29	Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME Journal, 2017, 11, 1988-1996.	9.8	47
30	A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18872-18877.	7.1	42
31	Ligand delivery by haem carrier proteins: the binding of Serratia marcescens haemophore to its outer membrane receptor is mediated by two distinct peptide regions. Molecular Microbiology, 2003, 50, 77-88.	2.5	40
32	New Bacteriophages against Emerging Lineages ST23 and ST258 of Klebsiella pneumoniae and Efficacy Assessment in Galleria mellonella Larvae. Viruses, 2019, 11, 411.	3.3	36
33	The Search for Therapeutic Bacteriophages Uncovers One New Subfamily and Two New Genera of Pseudomonas-Infecting Myoviridae. PLoS ONE, 2015, 10, e0117163.	2.5	33
34	The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity. Viruses, 2018, 10, 327.	3.3	30
35	Bacteriophages in the Experimental Treatment of Pseudomonas aeruginosa Infections in Mice. Advances in Virus Research, 2012, 83, 123-141.	2.1	28
36	On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage, 2012, 2, e23557.	1.9	27

#	Article	IF	Citations
37	The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host and Microbe, 2022, 30, 556-569.e5.	11.0	24
38	Viral Host Range database, an online tool for recording, analyzing and disseminating virus–host interactions. Bioinformatics, 2021, 37, 2798-2801.	4.1	23
39	Combination of inÂvivo phage therapy data with in silico model highlights key parameters for pneumonia treatment efficacy. Cell Reports, 2022, 39, 110825.	6.4	19
40	Intestinal Bacteriophage Therapy: Looking for Optimal Efficacy. Clinical Microbiology Reviews, 2021, , e0013621.	13.6	18
41	Isolation and Characterization of Bacteriophages That Infect Citrobacter rodentium, a Model Pathogen for Intestinal Diseases. Viruses, 2020, 12, 737.	3.3	16
42	Probing the In Vivo Dynamics of Type I Protein Secretion Complex Association through Sensitivity to Detergents. Journal of Bacteriology, 2007, 189, 1496-1504.	2.2	15
43	Commentary: Morphologically Distinct Escherichia coli Bacteriophages Differ in Their Efficacy and Ability to Stimulate Cytokine Release In Vitro. Frontiers in Microbiology, 2016, 7, 1029.	3.5	14
44	Characterization of Nasal Potential Difference in cftr Knockout and F508del-CFTR Mice. PLoS ONE, 2013, 8, e57317.	2.5	13
45	Optimizing the Timing and Composition of Therapeutic Phage Cocktails: A Control-Theoretic Approach. Bulletin of Mathematical Biology, 2020, 82, 75.	1.9	13
46	Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone. Current Opinion in Microbiology, 2014, 20, 125-130.	5.1	12
47	Prophylactic Administration of a Bacteriophage Cocktail Is Safe and Effective in Reducing Salmonella enterica Serovar Typhimurium Burden <i>in Vivo</i> . Microbiology Spectrum, 2021, 9, e0049721.	3.0	12
48	Centennial celebration of the bacteriophage research. Research in Microbiology, 2018, 169, 479-480.	2.1	9
49	Viruses of Microbes. Viruses, 2017, 9, 263.	3.3	5
50	Hemophore-Dependent Heme Acquisition Systems. , 0, , 38-47.		5
51	Lipopolysaccharides from six strains of Acetobacter diazotrophicus. FEMS Microbiology Letters, 1995, 132, 45-50.	1.8	4
52	In Vivo Bacteriophage Biodistribution. Methods in Molecular Biology, 2018, 1693, 123-137.	0.9	4
53	Closed and High-Quality Bacterial Genome Sequences of the Oligo-Mouse-Microbiota Community. Microbiology Resource Announcements, 2021, 10, .	0.6	4
54	The intestinal virome: lessons from animal models. Current Opinion in Virology, 2021, 51, 141-148.	5.4	4