Elisa Principi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8974974/publications.pdf

Version: 2024-02-01

		1039880	1281743
11	927	9	11
papers	citations	h-index	g-index
11	11	11	2138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Anthropometric and glucometabolic changes in an aged mouse model of lipocalin-2 overexpression. International Journal of Obesity, 2019, 43, 189-201.	1.6	9
2	The role of the P2X7 receptor in myeloid-derived suppressor cells and immunosuppression. Current Opinion in Pharmacology, 2019, 47, 82-89.	1.7	12
3	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 2017, 6, 1018-1028.	1.6	399
4	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	1.6	104
5	LCN2 overexpression in bone enhances the hematopoietic compartment via modulation of the bone marrow microenvironment. Journal of Cellular Physiology, 2017, 232, 3077-3087.	2.0	15
6	Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo. International Journal of Nanomedicine, 2016, Volume 11, 4299-4316.	3.3	43
7	Fenretinide (4-HPR) Targets Caspase-9, ERK $1/2$ and the Wnt3a \hat{l}^2 -Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids. PLoS ONE, 2016, 11, e0154111.	1.1	24
8	Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition. International Journal of Nanomedicine, 2015, 10, 6133.	3.3	28
9	Effects of 5-Fluorouracil on Morphology, Cell Cycle, Proliferation, Apoptosis, Autophagy and ROS Production in Endothelial Cells and Cardiomyocytes. PLoS ONE, 2015, 10, e0115686.	1.1	217
10	Effects of Diet-Derived Molecules on the Tumor Microenvironment. Current Angiogenesis, 2012, 1, 206-214.	0.1	4
11	Interactions of single-wall carbon nanotubes with endothelial cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 277-288.	1.7	72